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Abstract: The Bianchi type-I dark energy model in the 𝑓(𝑇) theory of gravity has been examined in this study. We 

have examined Bianchi type-I solutions employing constant deceleration parameter. Some physical properties of 

the examined model are also covered in details. 
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I. INTRODUCTION  

          Theory of Relativity by Albert Einstein, which was proposed at the beginning of the 19th century, is regarded 

as an innovation to modern cosmology. Later, Riemann space time developed this theory in accordance with the 

Levi-Civita connection, a torsion-free and metrically compatible link that helps us grasp the universe's underlying 

geological structure. The challenges encountered by the aforementioned hypothesis include initial singularity, 

cosmological constant, fine tuning, cosmic co-incidence, and flatness [1,2]. Einstein's theory of gravitation had a 

significant impact on the development of a model of cosmology and the explanation in terms of the Universe's 

creation and evolution. However, late-time acceleration could not be explained by Einstein's theory, which is one 

among the most important topics in contemporary cosmology [3]. To explain how dark energy and dark matter, 

as well as late-time acceleration, exist in the universe, a number of modified gravity theories, such as those that 

have recently been proposed, have been put forth [4]. The Wilkinson Microwave Anisotropy Probe (WMAP) 

finds indirect evidence explain the Universe's accelerated expansion in the Cosmic Microwave Background 

(CMB) radiation [5,6] and large-scale structure [7]. 

          According to Einstein's theory, several researchers are making significant attempts to observe dark energy 

permeated the entire universe. The Universe's fast expansion is caused by a type of negative pressure force referred 

described as dark energy [8]. To understand the character of the Universe's accelerated expansion, we have 

numerous theoretical models of dark energy to choose from, including the quintessence scalar field models [9,10], 

the phantom field [11-13], K-essence [14,15], tachyon field [16], quinton [17,18], and Chaplygin gas [19,20]. 

Approximately 74% is the dark energy of the Universe, dark matter is 22% and the remaining 4% is regular matter 

[21-24]. 

          Among the modified theories of gravity are 𝑓(𝑅), 𝑓(𝑅, 𝑇), 𝑓(𝐺), 𝑓(𝐺, 𝑇) and 𝑓(𝑇). The modified theories 

of gravity have the significant benefit of explaining the cosmic acceleration in late time and early time expansion. 

Among these are ideas, the generalized teleparallel theory of gravity attracted attention due to its elucidation of 

dark energy. In 1928, Einstein suggested teleparallelism to combine gravity and electromagnetic into a unified 

field theory in which space-time is incorporated a connection with diminishing curvature but nonzero torsion, the 

so-called 𝑓(𝑇) gravity where T signifies torsion. The acceleration of the universe in this gravity is caused by 

torsional forces. [25-27]. 𝑓(𝑇)gravity is based on Weitzenbock geometry. Gravitation is attributed in this theory 

to the torsion of a space-time with zero curvature, which acts as a force [28].          

          Recently Chirde and Shekh [29] have investigated the development of dark energy parameter for spatially 

homogeneous and anisotropic Bianchi type-I universes within the context of 𝑓(𝑇) theory of gravity, employing a 

suitable physical assumption and Hubble's law of variation, which produces the constant value of the deceleration 

parameter. Daouda et al. [30] have created the 𝑓(𝑇) gravity model reconstruction using holographic dark energy. 

Dent et al. [31] have studied 𝑓(𝑇) cosmology at the levels of background and disturbance, and have developed a 

general framework in order to rebuild corresponding for any particular dynamical dark energy scenario, a one-

parameter family of models. Jamil et al. [32] have investigated the model of dark energy interacting in 𝑓(𝑇) 
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cosmology, considering dark energy to be a perfect fluid and selecting a specific cosmologically viable  form 

𝑓(𝑇) = β√T. Sharif and Azeem [33] have explored the actions of the dark energy's state parameter and energy 

density equation in the setting of 𝑓(𝑇) gravity and used anisotropic LRS Bianchi type I universe model for this 

purpose. Sharif and Rani [34] have investigated the bulk viscosity of dust matter under generalized teleparallel 

gravity and analyzed many simulations of dark energy in this situation, as well as a viscous model with time 

dependence; the viscous equation of state parameter for these dark energy models must be developed.                                    

          We explored when dark energy is present in the Bianchi type-I cosmological model, utilising the theoretical 

framework, and were motivated by the earlier research. To acquire precise answers to the modified field equation 

of the gravitational teleparallel theory, we assumed a particular rule of variation for Hubble's parameter which 

produces a constant deceleration parameter. The following is how this document is structured, Section 2: 

𝑓(𝑇)gravity. Section 3: Equations using metric and field. Section 4: Solutions of field equations. Section 5: Some 

physical parameters. Section 6: Discussion. Section 7: Conclusion. 
 

II. 𝒇(𝑻) GRAVITY 

In the given section, we provides a quick explanation of 𝑓(𝑇) gravity as well as a full development of its field 

equations. The 𝑓(𝑇) theory of gravity is formulated in Weitzenböck space time using the line element made 

available by 

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈                                                                                                                                                (1) 

where, 𝑔𝜇𝜈 are the symmetric components having ten degrees of freedom. 

It is possible to change this line element to Minkowski's description of the tetrad transformation as follows 

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = 𝜂𝑖𝑗𝜃𝑖𝜃𝑗                                                                                                                               (2) 

𝑑𝑥𝜇 = 𝑒𝑖
𝜇

𝜃𝑖 ,     𝜃𝑖 = 𝑒𝜇
𝑖 𝑑𝑥𝜇                                                                                                                                   (3) 

where, 𝑒𝑖𝑒𝑗=𝜂𝑖𝑗 and 𝜂𝑖𝑗 = 𝑑𝑖𝑎𝑔(1, −1, −1, −1) is Minkowski metric. 

The formula for the metric determinant's square root is √−𝑔 = det[𝑒𝜇
𝑖 ] = 𝑒.                             

When just the non-zero torsion terms are present and the Riemann tensor component of the manifold is null 

(contribution of the Levi-Civita link), the components of the Weitzenböck connection are defined as, 

Γ𝜇𝜈
𝜌

= ℎ𝑖
𝜌

𝜕𝜈ℎ𝜇
𝑖 = −ℎ𝜇

𝑖 𝜕𝜈ℎ𝑖
𝜌

                                                                                                                                    (4) 

The curvature is zero, but the torsion is not. The antisymmetric portion of this connection gives the following 

definitions of the tensor torsion's components, 

𝑇𝜇𝜈
𝜌

= Γ   νμ
ρ

− Γ   μν
ρ

= ℎ𝑖
𝜌

(𝜕𝜇ℎ𝜈
𝑖 − 𝜕𝜈ℎ𝜇

𝑖 )                                                                                                                 (5) 

The Levi-Civita connection and the Weitzenböck connection differ in a space-time tensor called the contortion 

tensor. 

𝐾𝜌
𝜇𝜈

= −
1

2
(𝑇      𝜌

𝜇𝜈
− 𝑇𝜌

𝜈𝜇
− 𝑇𝜌

    𝜇𝜈
)                                                                                                                          (6) 

and antisymmetric tensor is, 

𝑆𝜌
𝜇𝜈

=
1

2
(𝐾      𝜌

𝜇𝜈
+ 𝛿𝜌

𝜇
𝑇      𝜃

𝜃𝜈 − 𝛿𝜌
𝜈𝑇      𝜃

𝜃𝜇
)                                                                                                                     (7) 

The form of the torsion scalar is 

𝑇 = 𝑆𝜌
𝜇𝜈

𝑇𝜇𝜈
𝜌

                                                                                                                                                            (8) 

A generalisation of the teleparallel theory of gravity, theory of gravity's field equation is given by the action, 

where T is the torsion scalar provided by [35,36] 

𝐼 = ∫ 𝑒[𝑓(𝑇) = 𝐿𝑚𝑎𝑡𝑡𝑒𝑟]𝑑4𝑥                                                                                                                                 (9) 

where, 𝑓(𝑇)denotes Torsion scalar T's differentiable function and Lmatter denotes the matter Lagrangian and         

𝑒 = √−𝑔. 

By altering the action with regard to the vierbein as follows, the teleparallel theory of gravity's modified field 

equation is discovered, 

[𝑒−1𝜕𝜇(𝑒𝑆𝑖
  𝜇𝜈

) − ℎ𝑖
𝜆𝑇  𝜇𝜆

𝜌
𝑆𝜌

  𝜈𝜇
]𝑓𝑇 + 𝑆𝑖

 𝜇𝜈
𝜕𝜇(𝑇)𝑓𝑇𝑇 +

1

4
ℎ𝑖

𝜈𝑓 =
1

2
𝑘2ℎ𝑖

𝜌
𝜏𝜌

𝜈,                                                            (10) 

where, 𝑆𝑖
 𝜇𝜈

= ℎ𝑖
𝜌

𝑆𝜌
  𝜇𝑣

, 𝑘2 = 8𝜋𝐺, 𝑓𝑇 =
𝑑𝑓

𝑑𝑇
 ,  𝑓𝑇𝑇 =

𝑑2𝑓

𝑑𝑇2 
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III. EQUATIONS USING METRIC AND FIELD 

The space time of Bianchi type-I is [37,38,39] 

𝑑𝑠2 = 𝐴2{𝑑𝑥2 + 𝑑𝑦2 + (1 + 𝛽 ∫
𝑑𝑡

𝐴3)2 𝑑𝑧2} − 𝑑𝑡2                                                                                             (11) 

where, 𝛽 is a positive constant and A is proportional to cosmic time t.  

Dark energy's energy momentum tensor is provided by 

𝑇𝜌
𝜈 = 𝑑𝑖𝑎𝑔[𝜌𝑚, −𝑝𝑚, −𝑝𝑚, −𝑝𝑚]                                                                                                                        (12) 

where, 𝑝𝑚 and 𝜌𝑚 denote matter pressure and energy density, respectively. 

For the dark energy of the energy momentum tensor in eqn. (12), the space time of Bianchi type-I may be 

expressed as follows from eqn. (10), 

−2 [
𝐴�̇�

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)
] 𝑓𝑇 +

(−𝛽)

𝐴3(1+𝛽 ∫
𝑑𝑡

𝐴3)
�̇�𝑓𝑇𝑇 − 𝑓 = −𝑘2𝜌𝑚                                                                               (13) 

−2 [
𝐴�̇�

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)
] 𝑓𝑇 +

(−𝛽)

𝐴3(1+𝛽 ∫
𝑑𝑡

𝐴3)
�̇�𝑓𝑇𝑇 − 𝑓 = 𝑘2𝑝𝑚                                                                                  (14) 

3. 

4 [
�̈�

𝐴
+

3�̇�2

𝐴2 +
2𝐴𝛽̇

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)2
−

�̇�2

𝐴2 −
𝐴�̇�

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)
] 𝑓𝑇 −

4�̇�

𝐴
�̇�𝑓𝑇𝑇 − 𝑓 = −2𝑘2𝑝𝑚                                          (15)

 
𝑓 −

4𝐴2̇

𝐴2 −
8𝐴�̇�

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)
= −2𝑘2𝑝𝑚                                                                                                                  (16)

 
Finally, there are four differential equations with five unknowns, specifically 𝐴, 𝛽, 𝑓, 𝜌𝑚, 𝑝𝑚. 

From eqns. (6-8), we get Torsion Scalar T as, 

𝑇 =
−4𝐴�̇�

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)
−

2𝐴2̇

𝐴2                                                                                                                                        (17) 

and 

�̇� =
−4�̈�𝐴4(1+𝛽 ∫

𝑑𝑡

𝐴3)+𝐴𝛽2̇

[𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)]2
− (

4𝐴2�̇��̈�−4𝐴�̇�2

𝐴4 )                                                                                                      (18) 

The Conservation equation is given as 

𝑝𝑚 + 3𝐻(𝜌𝑚 + 𝑝𝑚) = 0̇                                                                                                                                      (19) 

 

IV. SOLUTIONS OF FIELD EQUATION 

Assume that Hubble's parameter varies according to Bermann's special law of variation, which results in the 

constant deceleration parameter produced by the relation, 

𝑞 = −
𝑎�̈�

𝑎2̇
                                                                                                                                                               (20) 

here the average scale factor is represented by 𝑎. 

The constant deceleration parameter has a negative sign since the universe is thought to be expanding faster. 

From eqn. (1) of given metric, 

𝑎 = [𝐴3(1 + 𝛽 ∫
𝑑𝑡

𝐴3)]
1

3                                                                                                                                         (21) 

From eqns. (20) and (21), we get 

𝑎 = (𝑐1𝑡 + 𝑐2)
1

1+𝑞;   𝑞 ≠ −1                                                                                                                                (22) 

where 1c 0 , 2c  are integrating constant. 

The deceleration parameter q is given as, 

𝑞 = 𝑛 − 1                                                                                                                                                             (23) 

Comparing eqns. (21) and (22) 

𝐴 = (𝑐1𝑡 + 𝑐2)
3

𝑛(𝑚+3)                                                                                                                                           (24) 

(1 + 𝛽 ∫
𝑑𝑡

𝐴3) = (𝑐1𝑡 + 𝑐2)
3𝑚

𝑛(𝑚+3)                                                                                                                          (25) 

Using eqns. (24) and (25) in the eqn. (11) 

𝑑𝑠2 = {(𝑐1𝑡 + 𝑐2)
3

𝑛(𝑚+3)}2[𝑑𝑥2 + 𝑑𝑦2 + {(𝑐1𝑡 + 𝑐2)
3𝑚

𝑛(𝑚+3)}2𝑑𝑧2] − 𝑑𝑡2                                                          (26) 

From eqn. (16) pressure of the matter as follows,  
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𝑝𝑚 = −
1

2
𝑘2[𝑓(𝑇) −

4𝐴2̇

𝐴2 −
8𝐴�̇�

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)
]                                                                                                               (27) 

We take 𝑓(𝑇) = 𝑇  in eqn. (27) 

𝑝𝑚 = −
1

2
𝑘2[𝑇 −

4𝐴2̇

𝐴2 −
8𝐴�̇�

𝐴4(1+𝛽 ∫
𝑑𝑡

𝐴3)
]                                                                                                                     (28) 

Where, 𝑘2 = 8𝜋𝐺 

The energy density-pressure relationship described by the EoS as, 

𝑝𝑚 = 𝜔𝜌𝑚                                                                                                                                                           (29) 

Where 𝜔 is EoS parameter 

From eqns. (13) and (14) 

𝜔 = −1                                                                                                                                                                (30) 

From eqns. (29) and (30), we discover the following relationship between energy density and pressure, 

𝑝𝑚 = −𝜌𝑚                                                                                                                                                           (31)  

 

V. SOME PHYSICAL PARAMETERS 

Dark energy is shown in eqn. (26), Universe described by a Bianchi Type I cosmological model within the context 

of the 𝑓(𝑇) theory of gravity. Now, using the physical parameters listed below, we will talk about the physical 

properties of model.  

Mean Generalized Hubble’s parameter is, 

𝐻 =
𝑐1𝐶−1

𝑏
(𝑚 + 2)                                                                                                                                               (32) 

Spatial Volume, 

𝑉 = 𝐴3(1 + 𝛽 ∫
𝑑𝑡

𝐴3)                                                                                                                                             (33) 

Scalar expansion, 

𝜃 =
𝑐1𝐶−1

𝑏
(𝑚 + 2)                                                                                                                                               (34) 

The Anisotropy Parameter, 

Δ𝑚 =
2(𝑚−1)2

(𝑚+2)2                                                                                                                                                        (35) 

Shear Scalar, 

𝜎2 =
3(𝑚−1)2𝑐1𝐶−1

𝑏(𝑚+2)
                                                                                                                                                (36) 

where, 𝑏 =  𝑛(𝑚 + 3)and 𝐶 =  𝑡𝑐1 + 𝑐2 

 

VI. DISCUSSION 

In this part, we use physical parameters to explain the model's physical behavior. 

 We discovered that the Universe's spatial volume begins with the big bang at 𝑡 = −
𝑐2

𝑐1
  and it always gets better 

as time goes on to expand and when 𝑡 tends infinitely, the spatial volume tends indefinitely. This illustrates that 

the Universe has a starting volume of zero and grows over time. 
 The mean generalized Hubble parameter, the scalar expansion and shear scalar are functions of cosmic time t. As 

t tends infinitely all these parameters are tends to zero and when 𝑡 = −
𝑐2

𝑐1
 all these parameters are tends infinitely. 

 Anisotropy parameter in independent of cosmic time and the anisotropy parameter have remained constant 

throughout the universe's evolution. The model does not reach isotropy when the anisotropy value is non-zero 

for 𝑚 ≠ 1, however the anisotropy parameter is zero for 𝑚 = 1 and model is isotropic. 

 

VII.  CONCLUSION 

Within this paper, we looked into the Bianchi type-I metric when there is dark energy present 

with the help of 𝑓(𝑇) theory of gravity. To solve the mathematical equations for the field, we suppose 

that the particular law of variation of Hubble's parameter produces a constant deceleration parameter. 

When 𝑛 < 1 the deceleration parameter 𝑞 = −1 + 𝑛results in an accelerating universe and when 𝑛 > 1 

the deceleration parameter 𝑞 = −1 + 𝑛 results in a deceleration universe which matched the results of 

[3,40,41]. We found pressure and energy density relationship as, 𝑝𝑚 + 𝜌𝑚 = 0 with EoS parameter 𝜔 =
−1 gives an accelerating universe and 𝜔 = −1 in our model epoch exits. 
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