Primary Ideals in Ternary Semigroups

Jaya Lalitha.G¹, Sarala.Y², Madhusudhana Rao.D³

¹Research Scholar, Department of Mathematics, KL University, A.P, India.
²Faculty of Mathematics, Department of Mathematics, KL University, A.P, India.
³Faculty of Mathematics, Department of Mathematics, VSR & NVR College, Tenali,

Abstract:- In this paper we give some characterizations of the primary ideals in ternary semigroups. In this paper mainly we have to show that T be a ternary semigroup satisfying \(\bigcap M^n = 0 \) in which every ideal is a product of primaries. If T has exactly three primes different from M, then T is noetherian of dimension three.

Keywords:- Primary ideal, P-Primary ideal, Noetherian.

I. INTRODUCTION AND PRELIMINARIES

Throughout T will denote a commutative, multiplicative ternary semigroup with 0 and 1. Factorization theory, in one form or another, has been a topic of ongoing interest in algebra since the beginnings of the subject. In this paper we consider the implications of factorizations, of various types, of ideals as products of primary ideals.

By a prime ideal, we shall mean an ideal \(P(\neq T) \) which has the property that if it contains the product of three elements then it must contain one of them. The set M of all non units of T is a prime ideal, infact the unique maximal ideal of T. By a primary ideal, we shall mean an ideal \(Q(\neq T) \) which has the property that if it contains the product \(xyz \) of three elements and fails to contain \(x, y \) then it must contain a power of \(z \). Any power of the maximal ideal M is easily seen to be primary. The radical of an ideal I, denoted \(\text{rad}(I) \), is the set of elements having a power in I. It is easy to see that an ideal P is prime if and only if whenever P contains the product of three ideals, it must contain one of them. Similarly, an ideal Q is primary if and only if whenever Q contains the product ABC of three ideals and fails to contain A, B; \(\text{rad}(Q) \) must contain C. The radical of a primary ideal is prime, and any ideal having radical M is primary, as is easily seen. If Q is a primary ideal and \(\text{rad}(Q) = P \), then will say that Q is P-primary or that Q is primary with associated prime P. We shall say that a semigroup has a primary decomposition theory if every ideal has a representation as a finite intersection of primary ideals. (i.e a primary decomposition). Any primary decomposition can be refined to a normal decomposition (i.e one which is as short as possible and in which distinct primary terms have distinct radicals). If T is Noetherian then every primary ideal contains a power of its associated prime. We shall say that T has a strong primary decomposition theory if T has a primary decomposition and every primary contains a power of its radical.

By an irreducible ideal, we shall mean a non zero ideal which cannot be properly factored. (i.e \(A = BCD \) implies \(B = T \) or \(C = T \) or \(D = T \)). If A and B are subsets of T then we shall use \(A : B \) to denote the set of all elements \(x, y \) such that \(xyB \subseteq A \). If A is an ideal of T, then \(A : B \) is an ideal of T. If \(x \) is any element of T and A is an ideal of T, then \(A \cap(x) = (A:(x))(x) \), as easily seen. Hence a principal ideal is a factor of any ideal which it contains. By a principally reduced ternary semigroup we shall mean a ternary semigroup T in which no principal ideal \((x) \neq 0 \), is a proper factor of itself. By a factor reduced ternary semigroup we shall mean a ternary semigroup in which no ideal \(A \neq 0 \) is a proper factor of itself.

A ternary semigroup T is principally reduced if and only if \(M(x) = x \) implies \(x = 0 \). T is factor reduced if and only if \(\text{MMA} = A \) implies \(A = 0 \).
We begin by considering what is easily the simplest possible setting for factoring as product of primaries, namely that in which every ideal is already primary. We note that semigroups in which every ideal is primary were considered by satyanarayana [6], but under different cancellative assumptions.

Theorem 1: Let T be a principally reduced ternary semigroup in which every ideal is primary. If P is prime different from M then $P = 0$. Conversely, if T is a ternary semigroup in which M is the only non zero prime, then every ideal of T is primary.

Proof: Assume P is a prime ideal different from M. Choose x in P. Then $M(x)$ is primary. If $x \neq 0$, then $x \notin M(x)$, so $M \subset rad \ (M(x)) \subset rad \ ((x)) \subset P$, a contradiction. Hence $x = 0$, and M is the only non zero prime ideal of T.

It was shown in [6] that the radical of an ideal is the intersection of the primes containing it. Hence, if M is the only non zero prime ideal of T, and if A is any non prime ideal of T, then $M = rad \ (A)$, and therefore A is primary.

Note: If T satisfies a strong primary decomposition theory, then T is principally reduced if and only if $\bigcap_{n} M^{n} = 0$. If $\bigcap_{n} M^{n} = 0$, then T is factor reduced.

Proof: Assume T is principally reduced and $y \in \bigcap_{n} M^{n}$. If Q is any term from a primary decomposition of $M(y)$ and $y \notin Q$, then $M \subset rad \ (Q)$, so $y \in M^{n} \subset Q$, for some n is an odd positive integer. Hence $M(y) = y$. Since T is principally reduced, it follows that $y = 0$, and hence that $\bigcap_{n} M^{n} = 0$ since $(y)M$ implies $(y)M^{n}$ for all positive odd integer n, the converse is clear. Since $A = ABC$ implies $A = ABC^{n} \subset M^{n}$ for all positive odd integer n, the last statement follows.

We now consider the case in which every ideal is a product of primaries. Noetherian rings satisfying this condition have also attracted some interest as generalizations of Dedekind domains [1].

Theorem 2: Let T be a ternary semigroup satisfying $\bigcap_{n} M^{n} = 0$ in which every ideal is a product of primaries.

Then T has at most three primes different from M, each of which is principal. If P_{1} is a principal prime and P_{0} is a prime properly contained in P_{1}, then $P_{0} = 0$. If P_{1}, P_{2} and P_{3} are non comparable primes, then $M = P_{1} \cup P_{2} \cup P_{3}$.

Proof: Let P be any prime different from 0 and M. Then the quotient P/MMP is one-dimensional. To see this, note that if I is any ideal strictly between MMP and P, then one of the primary factors of I, say Q, is contained in P. Since I is not contained in MMP, P is not a factor of Q, so Q is properly contained in P. But then from MMP $P \subset Q$, we get $M \subset rad \ (Q) \subset P$, a contradiction. On the other hand, MMP is properly contained in P by above note. Hence P/MMP has dimension 1. It now follows that if x is any element of P/MMP, then necessarily $P = (x) \cup MMP$. But then $P = \bigcap_{n} [(x) \cup PM^{n}] = (x) \cup \bigcap_{n} PM^{n}$.

Hence, every prime different M is principal.

If P_{0}, P_{1} and P_{2} are distinct principal primes with P_{0} contained in P_{1} and $P_{0} = P_{1} \cap P_{2}$, then $P_{1}P_{2} = P_{0}P_{1}P_{2}$ from which it follows (above note) that $P_{0} = 0$.

Now assume that P_{1}, P_{2} and P_{3} are non comparable principal primes. It is easily seen that $(P_{1} \cup P_{2} \cup P_{3}) = P$ is another prime, and since P_{1} is non zero, it follows that $P = M$. If P_{0} is a third principal prime, then since P_{0} is principal and contained in $M = P_{1} \cup P_{2} \cup P_{3}$, it follows that P_{0} is contained in either P_{1} or P_{2} or P_{3}. But then $P_{0} = 0$. Hence T has at most three primes different from M and they are all principal.
In the special case of Theorem 2 where T has exactly three primes different from M, there is more to be said.

Theorem 3: Let T be a ternary semigroup satisfying $\bigcap_n M^n = 0$ in which every ideal is a product of primaries.

If T has exactly three primes different from M, then T is Noetherian of $(Krull)$ dimension 3.

Proof: Assume that T has primes, P_0, P_1, P_2, and P_3 different from M. By Theorem 2, we may assume that $P_0 = 0$ and that $M = P_1 \cup P_2 \cup P_3$. It is clear that T has $(Krull)$ dimension 3. Since $0 < P_1 < M$; $0 < P_2 < M$ and $0 < P_3 < M$ are the only maximal prime chains.

There are a variety of ways to see that T is Noetherian we choose one which is fairly unique to this situation:

Let E be a maximal non finitely generated ideal. Since the product of finitely generated ideals is finitely generated, and since E is the product of primary ideals, it must be that E is itself primary. Hence E is primary for one of P_1, P_2, P_3 and M. If E is primary for, say, P_1, then we can choose n so that E is contained in P_1^n but not in P_1^{n+1}. Then $E = E \cap P_1^n = (E : P_1^n)P_1^n$, with $E : P_1^n$ not contained in P_1. Since E is primary it follows that P_1^n is contained in E, and hence that $P_1^n = E$. But then $E = E \cap M = (E \cap P_1) \cup (E \cap P_2) \cup (E \cap P_3) = (E : P_1)P_1 \cup (E : P_2)P_2 \cup (E : P_3)P_3$ and of $E : P_1$, $E : P_2$ and $E : P_3$ must be greater than E, and hence finitely generated, since E has radical M. But then E is again finitely generated. Therefore every ideal of T is finitely generated and T is Noetherian.

Note 2: In the final paragraph of the proof of Theorem 3 it is shown that if E is prime ideal with a principal associated prime, then E is a power of its associated prime and hence principal. It is easy to see that if $B = R \cap R_1 \cap \ldots \cap R_n$ is a normal decomposition in which R_i are principal and have non comparable associated primes, then $A = [(R : R_n) \cap R_1 \cap \ldots \cap R_{n-1}]R_n$. It follows that if T is a principally reduced ternary semigroup satisfying a strong primary decomposition theory in which every prime ideal $P \neq M$ is principal, then every ideal is a product of primaries.

We now proceed to consider situations in which we have some sort of uniqueness of factorization.

The case in which every nonzero ideal of T has a unique factorization as a product of primaries is trivial: M^3 automatically has three different factorizations, since it is itself primary, so it follows that $M^3 = 0$. Hence it is clear that the most we should ask for is that every nonzero ideal be a unique product of irreducible primaries. On the other hand, it is easily seen that every ideal A of such a ternary semigroup satisfies the cancellative property $AAB = AAC$ implies $B = C$. Ternary semigroup satisfying this condition are Noetherian with $\bigcap_n M^n = 0$ [6]. We obtain a characterization under weaker hypothesis.

Theorem 4: Let T be a ternary semigroup satisfying $\bigcap_n M^n = 0$ in which every M - prime ideal contains a power of its radical. Assume that the prime ideals P of T satisfy the property $PPA = PPB \neq 0$ implies $A = B$, for all ideals A and B. Then either $M^3 = 0$ or T is Noetherian, every ideal of T is principal and every nonzero ideal of T is power of M.

Proof: We observe that if P is prime and $PPA \subseteq PPB \neq 0$ then $PPB = PP(A \cup B) \neq 0$, so $B = A \cup B$ and hence $A \subseteq B$.

First consider the case in which T has dimension 0 and $M^3 \neq 0$. Choose $y \in M \setminus M^3$ such that $M(y) \neq 0$, this is clearly possible since M is generated by the elements of $M \setminus M^3$. Since the radical of (y) is the intersection of the primes containing it, (y) has radical M, and hence is M-primary. Choose n least such that M^n is contained in (y). Then $M^n = M^n \cap (y) = (M^n \cap (y))(y)$ and M^n is not contained in
It follows that $M^n = (y)$. By the choice of $y \in M \setminus M^3$, we get that $n = 0$ and that $M = (y)$.

Now assume T has dimension greater than 0. Let E be the family of all subsets B of $M \setminus M^3$ such that $x, y \in B$ and $(x) = (y)$ implies $x = y$. Let G be a maximal element of E. If $z \in G$ implies $(z) = (g)$, for some element $g \in G$. Since $M = M \setminus M^3 \cup M^3$ and $\bigcap_n M^n = 0$, it follows that the ideal generated by G in M.

Fix $g \in G$ and let $H = H_g = G \setminus \{g\}$. Let J_g be the ideal generated by H. If $g \in J_g = \bigcup_{h \in G} (h)$, then $g \in (h)$ for some $h \in H$. But then $(g) = (h)$ or $(g) \subseteq M(h)$, both of which contradict the choice of G. Hence J_g is properly contained in M.

Let P be a prime ideal minimal over J_g. Since $M = J_g \cup (g)$ we have $P = J_g \cup (P \cap (g)) = J_g \cup (P : (g))(g)$. Hence either $P = J_g$ or $P = M$. If $P = M$, choose n least such that $M^n \subset J_g$. Since $M^n = M^n \cap (\bigcup_{h \in H} (h)) = \bigcup_{h \in H} (M^n \cap (h)) = \bigcup_{h \in H} (M^n : (h))(h)$, and since M^n is not contained in $M J_g$, it follows that $M^n : (h) = T$ for some $h \in H$. But then $h \in M \setminus M^3$ implies $n = 1$, a contradiction. Hence $P = J_g$.

From $M = J_g \cup (g) = P \cup (g)$, we get $M^3 = (P \cup (g))^3 = M(P^3 \cup (g^3)) \neq 0$ where $P(g) \subset ((g^3) \cup P^3) \cap P = (P \cap (g^3)) \cup P^3 = P(g^3) \cup P^3 = P((g^3) \cup P)$. Since $g \notin (g^3) \cup P$, it follows that $P((g^3) \cup P) = 0$. But then $P^3 = J_g^3 = 0$.

Fix $h \in G \setminus \{g\}$ since g is an arbitrary element of G, it follows that J_h is also prime and that $J_h^3 = 0$. But then $g \in J_h \subseteq J_g$, a contradiction. It is now clear that G has only one element g, and $M = (g)$.

Hence M is principal in either case.

Let A be any nonzero ideal of T. Choose n least such that A is not contained in M^{n+2}. Then $A = A \cap M^n = (A : M^n)M^n$, so $A : M^n = T$ and $A = M^n$. Hence every ideal of T is principal and every nonzero ideal is a power of M.

REFERENCES