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Abstract:- The Transportation Problem is a classic problem of mathematical programming and may be applied to a 

variety of real life problems. Not only is it used in commodity transportation problems, but also in other applications. 

The objective in the problem is to determine the amounts shipped from each source to each destination minimizing the 

total ship cost, respecting supply and demand constraints. The algorithms to solve the problem usually start with an 

initial basic feasible solution and then solution is iteratively improved. In order to obtain the initial solution the three 

most cited methods in the literature are Northwest Corner Rule, the Least Cost Method and the Vogel Method. The 

problem is that the initial feasible solution may not be basic and then the basis needs to be completed with 

degenerated variables. This paper presents a study of degeneracy occurrence when the Least Cost Method is used to 

obtain the initial feasible solution, comparing different problem sizes, and ranges of cost, supplies and demands. 
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I. INTRODUCTION   

In the Transportation Problem the goal is to minimize the total cost for sending a single commodity 

from m origins to n destinations subject to offers and demands constraints. Its mathematical formulation, based 

on [1], [2] and [3] is described as 

 

(1) 
 
 
 

 

(2) 
 
 
 

 

(3) 
 
 
 

(4) 
 
 
 

The unitary transportation cost is defined by cij and the decision variables xij describe the amount to be 

shipped from origin i to destination j. The quantity offered by the source i and demanded by destination j are 

represented respectively by ai and bj. The set of constraints (4) indicates that it is not allowed negative amount 

of transport. 
 

The set of constraints (2) and (3) is composed of m+n equations and there is exactly one redundant 

constraint [1]. When any one of those constraints is dropped, the remaining system of equation is linearly 

independent [3]. Therefore, an extreme point is represented by m+n-1 basic variables. It implies that when a 
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transportation problem algorithm is implemented it is possible to use a structure with, in the maximum, only 
m+n-1 variables different of zero. 
 

However it is possible that a basic variable assumes value zero, which is called degenerated variable 

[3]. Depending of the structure used when the MODI algorithm is implemented to solve the transportation 

problem, degeneracy may be a problem. In this sense this paper aims to study the degeneracy occurrence when 

the least cost method is used as initial solution for the MODI method. 

 
II. THE MODI METHOD FOR SOLVING TRANSPORTATION PROBLEM   

The methods to solve a transportation problem start with an Initial Basic Feasible Solution (IBFS) 

followed by an iterative improvement procedure. When a basic feasible solution is known, the most referenced 

method for solution improvement is the MODI. 
 

The MODI method to solve a TP is highly described in the literature, such as Murty [2], Hasan [5] and 

Loch and Silva [6] and is well known for those having worked with mathematical programming. The method, as 

cited in Loch and Silva [6] is presented in algorithm 1:  
Step1. Obtain an initial basic feasible solution.  
Step2. Compute the potential (or multiplier) of each row and column. Using the fact that cij=ui-vj for 

each basic variable, set u1=0 and, recursively, compute the remaining ui’s and vj’s. 
Step3. For each non-basic variable, compute kij=cij-ui-vj. 

Step4. If there is a negative kij, chose the variable xpq associated with the most negative kpq to entry the 

basis. Otherwise, go to step9.  
Step5. Find a θ-loop in the set of cells consisted by the cell (p,q) and the basic cells. 

 
Step6. Place an entry of +θ in the cell (p,q) and alternately the entries of –θ and +θ among the cells in 

the θ-loop. The cells place with –θ are called donor cell and the ones placed with +θ are called recipient. 
 

Step7. Identify the donor cell (r,s) with the smallest value (in case of a draw, choose one arbitrarily) 

and set θ=xrs.  
Step8. Compute xij=xij+θ for the recipient cells in the θ-loop and xij=xij-θ for the donor cell in the θ-

loop. Then cell (r,s) becomes non basic and cell (p,q) becomes basic. Go to Step2.  
Step9. Finish. The current solution is optimal. 

 
III. THE LEAST COST METHOD FOR INITIAL FEASIBLE SOLUTION  

The Least Cost Method, based on [2] and [4] may be resumed 

Step1. Select a variable xrs such as crs=min{cij, a’i>0 and b’j>0} 
Step2. Set xrs=min{ar, bs}, ar=ar-xrs and bs=bs-xrs. 
Step3. If there is ai>0 or bj>0 return to Step1. Otherwise, Finish. 

 
Numerical examples of the least cost method can be easily found in the literature as in [1], [2] and [3]. 

So in this paper it is going to be presented in Figure 1 only an example of a solution with degenerated basic 

variable, without showing how the result was obtained.  
   1 2 3 4 5   Supply 
 1       100   100  

2   0 80 0    80  

 3     120     120  

4  60   0    60  

 5   40    80   120  

 Demand 60 40 80 120 180     

Figure 1 – Example of solution with three degenerated basic variables 

 
IV. THE COMPUTATIONAL EXPERIMENT  

In order to analyze the occurrence of degenerated basic variables in the initial solution when the least 

cost method is used it was studied transportation problems of different sizes, costs ranges, supply ranges and 

demand ranges. 
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The problem sizes studied were 5x5, 10x10, 20x20, 40x40, 80x80, 160x160. The costs (integer values) 

were generated in different intervals, [3,8], [3,80], [3,800] e [3,8000], and the supply and demand values 

(integer values) were generated in the intervals [5,50], [5,500], [5,5000] e [5,50000]. Therefore, it was 

considered 384 parameter combinations and for each one it were created and solved 10000 problems, totaling 

3.84 million examples. 
 

The first analysis was about the main effects in the percentage of solved problems with at least one 

degenerated basic variable. That is, it was identified which factors influence in the percentage of problems with 

at least one degenerated basic variable in the solution obtained by the Least Cost Method. 

 

Effect of problem size  Effect of cost range  

20,00%      20,00%    

15,00%      15,00%    

10,00%      10,00%    

5,00%      5,00%    

0,00%      0,00%    
5 10 20 40 80 160 8 80 800 8000 

Effect os supply range  Effect of demand range  

20,00%      20,00%    

15,00%      15,00%    

10,00%      10,00%    

5,00%      5,00%    

0,00%      0,00%    
50  500 5000  50000 50 500 5000 50000 

 
 
 

 
Figure 1 – Main effect analysis of degeneracy occurrence for the least cost method 

 
Based on the graphics of Figure 1 it is possible to conclude, for the studied intervals, that the 

percentage of problems with degenerated basic variables in the initial solution obtained by the Least Cost 

Method increases as the problem size increases and decreases as the range of supply and demand increases. 

Furthermore, there is no influence of costs range. 
 

To complement the graphic analysis and also to obtain information about the interactions among the 
factor it was computed the ANOVA (exhibit 1) to the computational results. 
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Exhibit 1 – ANOVA  

Source  DF  SS(Aj.)  MS(Aj.)  Fvalue  p-value 
 ProblemSize   5   0,8910   0,178208    *   *  

MaxCusto 3  0,0007 0,000217 *  *  

 MaxOferta   3   2,0587   0,686249    *   *  

MaxDemanda 3  2,0558 0,685274 *  *  

 ProblemSize *MaxCusto   15   0,0034   0,000225    *   *  

ProblemSize *MaxOferta 15  0,7981 0,053204 *  *  

 ProblemSize *MaxDemanda   15   0,7938   0,052917    *   *  

MaxCusto*MaxOferta 9  0,0005 0,000051 *  *  

 MaxCusto*MaxDemanda   9   0,0005   0,000051    *   *  

MaxOferta*MaxDemanda 9  4,7164 0,524050 *  *  

 ProblemSize *MaxCost*MaxSupply   45   0,0029   0,000065    *   *  

ProblemSize *MaxCost*MaxDemand 45  0,0027 0,000060 *  *  

 ProblemSize *MaxSupply*MaxDemand   45   1,4527   0,032282    *   *  

MaxCost*MaxSupply*MaxDemand 27  0,0077 0,000283 *  *  

 ProblemSize   135   0,0136   0,000101    *   *  

 *MaxCost*MaxSupply*MaxDemand                  

Error 0  *  *         

 Total   383   12,7984            

 
The sum of squares that presented the least values (less then 0.1) were joined to form the residual and 

then it was possible to calculate the p-values (Exhibit 2) 

 
Exhibit 2 – ANOVA with residual  

Source  DF  SS(Aj.)  MS(Aj.)  Fvalue  p-value 
 ProblemSize   5    0,891   0,178208   1608,9   4,546E-208  

MaxSupply 3  2,0587 0,686249  6195,602   3,588E-261 
 MaxDemand   3    2,0558   0,685274   6186,8   4,390E-261  

ProblemSize *MaxSupply 15  0,7981 0,053204  480,3371   8,343E-194 
 ProblemSize *MaxDemand   15    0,7938   0,052917   477,746   1,762E-193  

MaxOferta*MaxDemand 9  4,7164 0,52405  4731,235   4,224E-307 
 ProblemSize *MaxSupply*MaxDemand   45    1,4527   0,032282   291,4488   2,269E-214  

Residual 288  0,0319 0,000111        

 Total   383    12,7984           

 
When the p-values of Exhibit 2 are analyzed, it is possible to conclude that exists effect of interactions 

between the factors ProblemSize*MaxSupply, ProblemSize*MaxDemand, MaxSupply*MaxDemand and 

ProblemSize*MaxSupply*MaxDemand. 
 

For graphical analysis of the existence, or not, of factors interactions, it is observed in each graphic the 

behavior of the curves. The more parallel lines are, more evidence is there that there is no interaction between 

factor levels. On the other hand, in the case of non-parallel lines, it is concluded that there is interaction between 

factor levels. 
 

Based on the graphics of Figure 2 and on Exhibit 1, all second-order interactions involving the cost 

ranges do not interfere in the percentage of problems that have degenerate basic variables in the initial solution 

obtained by the least cost method. 
 

On the other hand, when analyzed the interaction between problem size and supply range (MaxSupply), 

it is observed that the behavior of curves of different supply ranges when the problem size is increased, is not the 

same. Thus, it is concluded that there is interaction between the problem size and supply range. Analogous 

situation occurs for the interaction between problem size and demand range. 
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Figure 2 – Graphical analysis of second order interaction between the factors 

 
Based on the results of ANOVA and graphical analysis it is possible to infer that for the parameter 

levels studied the cost range, as expected, does not influence on the percentage of problems with at least one 

degenerated basic variable. However, the problem size and the supply and demand ranges interfere on 

degeneracy. 
 

Finally, for the interaction between the supply and demand ranges, it is noted that for a fixed supply 

range, when the demand range is equal to supply range, a greater number of problems with degenerate variables 

occurs after initial solution by the least cost method. These results are set out in Exhibit 3. 

 
Exhibit 3 – Analysis of interaction between Supply and Demand ranges  

MaxDemand 
50 500 5000 50000  

MaxSupply  

    
 

50 62,22% 10,76% 1,00% 0,12% 
 

500 10,70% 17,47% 1,19% 0,10% 
 

5000 1,03% 1,20% 2,12% 0,12% 
 

50000 0,09% 0,10% 0,13% 0,23% 
 

 
The degeneracy occurred in more than 60% of the problems when the supply and demand ranges were 

both [5,50], showing that degeneracy is common for small ranges of supply and demand. To complement the 

analysis it was listed (Exhibit 4) the parameter configurations at which at least 30% of the problems presented 

degeneracy. 

 
Exhibit 4 – Parameter configurations with at least 30% of the problems presenting degeneracy  
  Problem  Cost range  Supply range  Demand  Problems that  

  size        range  presented degeneracy  
  160   [3,800]   [5,50]   [5,50]   99,95%   

 160  [3,80]  [5,50]  [5,50]  99,93%   

  160   [3,8000]   [5,50]   [5,50]   99,90%   

 160  [3,8]  [5,50]  [5,50]  99,82%   

  80   [3,800]   [5,50]   [5,50]   97,05%   

 80  [3,8000]  [5,50]  [5,50]  96,92%   
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80 [3,80] [5,50] [5,50] 96,81% 

80 [3,8] [5,50] [5,50] 95,40% 
40 [3,8000] [5,50] [5,50] 81,80% 
40 [3,800] [5,50] [5,50] 81,67% 

40 [3,80] [5,50] [5,50] 81,56% 

40 [3,8] [5,50] [5,50] 78,33% 
20 [3,80] [5,50] [5,50] 55,23% 
20 [3,800] [5,50] [5,50] 54,95% 
20 [3,8000] [5,50] [5,50] 54,78% 

20 [3,8] [5,50] [5,50] 52,55% 
160 [3,800] [5,500] [5,500] 50,65% 

160 [3,8000] [5,500] [5,500] 50,49% 
160 [3,80] [5,500] [5,500] 49,56% 

160 [3,8] [5,500] [5,500] 48,05% 
160 [3,8] [5,50] [5,500] 42,59% 

160 [3,8] [5,500] [5,50] 42,27% 

 
It is possible to note that large problems with small range of supply and demand present high indices of 

degeneracy in the initial solution by the least cost method. This kind of result could be expected before this 

study, but this paper aims to quantify the degeneracy occurrence. 

 
V. CONCLUSION   

The degeneracy may occur in transportation problem and depending on the way that the transportation 

problem is implemented it may cause problems in the algorithm. Because of this it is important a study of 

degeneracy occurrence. This paper focused on degeneracy when the well known least cost method is used for 

the initial solution and in quantifies the degeneracy occurrence. 
 

It was observer based on computational experiment with over 3 million problems tested that 

degeneracy is highly influenced by the supply and demand ranges. Besides that, it was noted that even for larger 

ranges it is not uncommon. So the structure that is going to be used when the transportation problem algorithm 

is implemented needs to be prepared to work with degeneracy. 
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