A New Class of Contra Continuous Functions in Topological Spaces

C.Janaki, V.Jeyanthi

1Department of Mathematics, L.R.G. Government College for Women, Tirapur-4, Tamil Nadu.
2Department of Mathematics, Sree Narayana Guru College, Coimbatore - 105, Tamil Nadu.

ABSTRACT: In this paper, we introduce and investigate the notion of contra πgr-continuous, almost contra πgr-continuous functions and discussed the relationship with other contra continuous functions and obtained their characteristics.

Keywords: Contra πgr-continuous, almost contra πgr-continuous, πgr-locally indiscrete, T_{πgr}-space.
AMS Subject Classification: 54C08, 54C10

I. INTRODUCTION

In this paper, the notion of contra πgr-continuity which is a stronger form of contra πg-continuity and their characterizations are introduced and investigated. Further, the notion of almost contra πgr-continuity is introduced and its properties are discussed.

II. PRELIMINARIES

In the present paper, the spaces X and Y always mean topological spaces (X,τ) and (Y,σ) respectively. For a subset A of a space, cl(A) and int(A) represent the closure of A and interior of A respectively.

Definition: 2.1
A subset A of X is said to be regular open [13] if A=int(cl(A)) and its complement is regular closed.

The finite union of regular open set is a regular open set[21] and its complement is a regular closed set. The union of all regular open sets contained in A is called rint(A)[regular interior of A] and the intersection of regular closed sets containing A is called rcl(A)[regular closure of A]

Definition: 2.2
A subset A of X is called
1. gr -closed[12,14] if rcl(A) ⊂ U whenever A⊂U and U is open.
2. πgr-closed[9] if rcl(A) ⊂ U whenever A⊂U and U is π-open.

Definition: 2.3
A function f: (X,τ)→(Y,σ) is called πgr-continuous[9] if f^{−1}(V) is πgr-closed in X for every closed set V in Y.

Definition: 2.4
A function f: (X,τ)→(Y,σ) is called
(i) Contra continuous[2] if f^{−1}(V) is closed in X for each open set V of Y.
(ii) Contra πg-continuous[5] if f^{−1}(V) is πg-closed in X for each open set V of Y.
(iii) Contra πgr-continuous[8] if f^{−1}(V) is πgr-closed in X for each open set V of Y.
(iv) Contra πgb-continuous[18] if f^{−1}(V) is πgb-closed in X for each open set V of Y.
(v) Contra π^g-continuous[6] if f^{−1}(V) is π^g-closed in X for each open set V of Y.
(vi) Contra gr-continuous[12] if f^{−1}(V) is gr-closed in X for each open set V of Y.
(vii) RC-continuous[5] if f^{−1}(V) is regular closed in X for each open set V of Y.
(viii) An R-map [5] if f^{−1}(V) is regular closed in X for each regular closed set V of Y.
(ix) Perfectly continuous[4] if f^{−1}(V) is clopen in X for each open set V of Y.
(x) rc-preserving [5] if f(U) is regular closed in Y for each regular closed set U of X.
(xi) A function \(f : X \to Y \) is called regular set connected [5] if \(f^{-1}(V) \) is clopen in \(X \) for every \(V \) in \(Y \).

(xii) Contra R-map [5] if \(f^{-1}(V) \) is regular closed in \(X \) for each regular open set \(V \) of \(Y \).

(xiii) Almost continuous [15] if \(f^{-1}(V) \) is closed in \(X \) for every regular closed set \(V \) of \(Y \).

Definition : 2.5

A space \((X,\tau)\) is called

(i) \(\pi\)-gr-T_{12} space [8] if every \(\pi\)-gr-closed set is regular closed.

(ii) locally indiscrete [20] if every open subset of \(X \) is closed.

(iii) Weakly Hausdorff [17] if each element of \(X \) is an intersection of regular closed sets.

(iv) Ultra Hausdorff space [19], if for every pair of distinct point \(x \) and \(y \) in \(X \), there exist clopen sets \(U \) and \(V \) in \(X \) containing \(x \) and \(y \) respectively.

(v) Hyper connected [20] if every open set is dense.

Definition : 2.6

A collection \(\{ A_i : i \in \Lambda \} \) of open sets in a topological space \(X \) is called open cover [16] of a subset \(B \) of \(X \) if \(B \subset \bigcup \{ A_i : i \in \Lambda \} \).

Definition : 2.7

A collection \(\{ A_i : i \in \Lambda \} \) of \(\pi\)-gr-open sets in a topological space \(X \) is called \(\pi\)-gr-open cover [10] of a subset \(B \) of \(X \) if \(B \subset \bigcup \{ A_i : i \in \Lambda \} \).

Definition : 2.8

A space \(X \) is called \(\pi\)-gr-connected [10] provided that \(X \) is not the union of two disjoint non-empty \(\pi\)-gr-open sets.

Definition : 2.9 [5]

Let \(S \) be a closed subset of \(X \). The set \(\bigcap \{ U \in \tau / S \subset U \} \) is called the kernel of \(S \) and is denoted by \(\text{Ker}(S) \).

III. CONTRA \(\pi\)-GR-CONTINUOUS FUNCTION.

Definition : 3.1

A function \(f : (X,\tau) \to (Y,\sigma) \) is called Contra \(\pi\)-gr-continuous if \(f^{-1}(V) \) is \(\pi\)-gr-closed in \((X,\tau) \) for each open set \(V \) of \((Y,\sigma) \).

Definition : 3.2

A space \((X,\tau)\) is called

(i) \(\pi\)-gr-locally indiscrete if every \(\pi\)-gr-open set is closed.

(ii) \(T_{\pi\text{-gr}}\)-space if every \(\pi\)-gr-closed is gr-closed.

Result : 3.3

Contra Continuous and contra \(\pi\)-gr-continuous are independent concepts.

Example : 3.4

a) Let \(X = \{a,b,c,d\} = Y, \tau = \{\varnothing, X, \{a\}, \{b\}, \{a,b,c\}, \{a,b,d\} \} \) \(\sigma = \{\varnothing, Y, \{c\}\} \). Let \(f : X \to Y \) be an identity map. Here the inverse image of the element \(c \) in the open set of \(Y \) is closed in \(X \) but not \(\pi\)-gr-closed in \(X \). Hence \(f \) is contra continuous and not contra \(\pi\)-gr-continuous.

b) Let \(X = \{a,b,c,d\} = Y, \tau = \{\varnothing, X, \{a\}, \{b\}, \{a,b,c\}, \{a,b,d\} \} \), \(\sigma = \{\varnothing, Y, \{d\}, \{a,d\}\} \). Let \(f : X \to Y \) be an identity map. Here the inverse image of the elements in the open set of \(Y \) are \(\pi\)-gr-closed in \(X \) but not closed in \(X \). Hence \(f \) is contra \(\pi\)-gr-continuous and not contra continuous. Hence contra continuity and contra \(\pi\)-gr-continuity are independent concepts.

Theorem : 3.5

Every RC-continuous function is contra \(\pi\)-gr-continuous but not conversely.

Proof: Straight Forward.

Example : 3.6

Let \(X = \{a,b,c,d\} = Y, \tau = \{\varnothing, X, \{a\}, \{c,d\}, \{a,c,d\}\} \), \(\sigma = \{\varnothing, Y, \{a\}, \{a,b\}\} \). Let \(f : X \to Y \) be defined by \(f(a) = b, f(b) = a, f(c) = c, f(d) = d \). The inverse image of the element in the open set of \(Y \) is \(\pi\)-gr-closed in \(X \) but not regular closed in \(X \). Hence \(f \) is contra \(\pi\)-gr-continuous and not RC-continuous.

Theorem : 3.7

Every Contra gr-continuous function is contra \(\pi\)-gr-continuous but not conversely.

Proof: Follows from the definition.

Example : 3.8

Let \(X = \{a,b,c,d\}, \tau = \{\varnothing, X, \{c\}, \{d\}, \{c,d\}, \{b,d\}, \{a,c,d\}, \{b,c,d\}\} \), \(\sigma = \{\varnothing, Y, \{a\}, \{a,d\}\} \). The inverse image of the element \(\{a,d\} \) in the open set of \(Y \) is \(\pi\)-gr-closed in \(X \) but not gr-closed. Hence \(f \) is contra \(\pi\)-gr-continuous and not contra gr-continuous.

Theorem : 3.9

Every contra \(\pi\)-gr-continuous function is contra \(\pi\)-continuous, contra \(\pi^{*}\)-continuous, contra \(\pi\)-gr-continuous and contra \(\pi\)-grb-continuous but not conversely.
Proof: Straight Forward.

Example: 3.10

a.Let X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c,d\}\}, \sigma = \{\emptyset, Y, \{b\}\}. Here the inverse image of the element \{b\} in the open set \(Y, \sigma\) is \(\pi g\)-closed in X, but not \(\pi gr\)-closed in X. Hence \(f\) is contra \(\pi g\)-continuous and not contra \(\pi gr\)-continuous.

b.Let X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c,d\}\}, \sigma = \{\emptyset, Y, \{b\}\}. Here the inverse image of the element \{b\} in the open set \(Y, \sigma\) is \(\pi g\)-closed in X, but not \(\pi gr\)-closed in X. Hence \(f\) is contra \(\pi g\)-continuous and not contra \(\pi gr\)-continuous.

c.Let X = \{a,b,c,d\} - Y, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c,d\}\}, \sigma = \{\emptyset, Y, \{a\}, \{a,b,c,d\}\}. Let \(f: X \rightarrow Y\) be an identity map. The inverse image of the element \{a\} in the open set \(Y, \sigma\) is \(\pi gb\)-closed but not \(\pi gr\)-closed. Hence \(f\) is contra \(\pi gb\)-continuous and not contra \(\pi gr\)-continuous.

d.Let X = \{a,b,c,d\} - Y, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c,d\}\}, \sigma = \{\emptyset, Y, \{c\}, \{d\}\}. Let \(f: X \rightarrow Y\) be an identity map. The inverse image of all the elements in Y are \(\pi gb\)-closed but not \(\pi gr\)-closed. Hence \(f\) is contra \(\pi gb\)-continuous and not contra \(\pi gr\)-continuous.

Remark: 3.11

The above relations are summarized in the following diagram.

![Diagram](https://www.ijres.org/46/46.png)

Theorem: 3.12

Suppose \(\pi gro(X, \tau)\) is closed under arbitrary unions. Then the following are equivalent for a function \(f\) : \((X, \tau) \rightarrow (Y, \sigma)\):

1. \(f\) is contra \(\pi gr\)-continuous.
2. For every closed subset \(F\) of Y, \(f^{-1}(F)\) \(\in\) \(\pi gro(X, \tau)\)
3. For each \(x \in X\) and each \(F \in C(Y, f(x))\), there exists a set \(U \in \pi gro(X, x)\) such that \(f(U) \subseteq F\).

Proof:

(1) \(\Leftrightarrow\) (2): Let \(f\) is contra \(\pi gr\)-continuous. Then \(f^{-1}(V)\) is \(\pi gr\)-closed in X for every open set \(V\) of \(Y\). (i.e) \(f^{-1}(F)\) is \(\pi gr\)-open in X for every closed set \(F\) of \(Y\). Hence \(f^{-1}(F)\) \(\in\) \(\pi gro(X, \tau)\).

(2) \(\Rightarrow\) (3): For every closed subset \(F\) of Y, \(f^{-1}(F)\) \(\in\) \(\pi gro(X, \tau)\). Then for each \(x \in X\) and each \(F \in C(Y, f(x))\), there exists a set \(U \in \pi gro(X, x)\) such that \(f(U) \subseteq F\).

(3) \(\Rightarrow\) (2): For each \(x \in X\), \(f \in C(Y, f(x))\), there exists a set \(U \in \pi gro(X, x)\) such that \(f(U) \subseteq F\). Let \(F\) be a closed set of \(Y\) and \(x \in f^{-1}(F)\). Then \(f(x) \in F\). Hence \(f^{-1}(F)\) \(\subseteq\) \(\pi gr\)-open.

Theorem: 3.13

If \(f: X \rightarrow Y\) is contra \(\pi gr\)-continuous and \(U\) is open in X. Then \(f(U) : (U, \tau) \rightarrow (Y, \sigma)\) is contra \(\pi gr\)-continuous.

Proof:

Let \(V\) be any closed set in \((Y, \sigma)\). Since \(f(X, \tau) \rightarrow (Y, \sigma)\) is contra \(\pi gr\)-continuous, \(f^{-1}(V)\) is \(\pi gr\)-open in X. Hence \(f(U)\) is \(\pi gr\)-open in Y.

Theorem: 3.14

If a function \(f\) : \((X, \tau) \rightarrow (Y, \sigma)\) is \(\pi gr\)-continuous and the space \((X, \tau)\) is \(\pi gr\)-locally indiscrete , then \(f\) is contra continuous.

Proof:

Let \(V\) be a open set in \((Y, \sigma)\). Since \(f\) is \(\pi gr\)-continuous, \(f^{-1}(V)\) is open in X. Hence \(f(U)\) is \(\pi gr\)-open in Y.

Theorem: 3.15

If a function \(f: X \rightarrow Y\) is contra \(\pi gr\)-continuous, \(X\) is a \(\pi gr\) -T\(_{1/2}\) space, then \(f\) is \(RC\)-continuous.

Proof:

Let \(V\) be open in \(Y\). Since \(f\) is contra \(\pi gr\)-continuous, \(f^{-1}(V)\) is \(\pi gr\)-closed in X. Hence \(f(U)\) is \(\pi gr\)-closed in X. Therefore \(f(U)\) is \(RC\)-continuous.

Theorem: 3.16

If a function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is contra \(\pi gr\)-continuous, \(RC\)-preserving surjection and if \(X\) is a \(\pi gr\) -T\(_{1/2}\) space, then \(Y\) is locally indiscrete.
A New Class of Contra Continuous Functions

Proof: Let V be open in Y. Since f is contra \(\pi \)gr-continuous, \(f^1(V) \) is \(\pi \)gr-closed in X. Since X is a \(\pi \)gr-\(T_{1/2} \) space, \(f^1(V) \) is regular closed in X. Since f is \(\pi \)gr-preserving surjection, \(f(f^1(V)) = V \) is regular closed in Y. Thus \(cl(V) = cl(int(V)) \subset cl(cl(int(V))) \subset V \). Hence V is closed in Y. Therefore, Y is locally indiscrete.

Theorem 3.17
If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is contra \(\pi \)gr-continuous and X is a \(\pi \)gr-space, then \(f((X, \tau)) - (Y, \sigma) \) is contra \(\pi \)gr-continuous.

Proof: Let V be an open set in Y. Since f is contra \(\pi \)gr-continuous, \(f^1(V) \) is \(\pi \)gr-closed in X. Since X is a \(T_{1/2} \) space, \(f^1(V) \) is gr-closed in X. Thus for every open set V of Y, \(f^1(V) \) is gr-closed. Hence f is contra \(\pi \)gr-continuous.

Theorem 3.18
Suppose \(\pi \)GRO(X, \tau) is closed under arbitrary unions. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function and \(\{U_i : i \in I = 1, 2, \ldots \} \) be a cover of X such that \(U_i \not\in \pi \)GRC(X, \tau) and regular open for each \(i \in I \). If \(f(U_i : (U_i, \tau(U_i)) \rightarrow (Y, \sigma) \) is contra \(\pi \)gr-continuous for each \(i \in I \), then f is contra \(\pi \)gr-continuous.

Proof: Suppose that \(F \) is any closed set of Y. We have \(f^1(F) = \bigcup \{ f^1(U_i) : i \in I \} \) since \(f(U_i) \) is contra \(\pi \)gr-continuous for each \(i \in I \). Hence \(f^1(F) \) is \(\pi \)GRO(X).

Theorem 3.19
Suppose \(\pi \)GRO(X, \tau) is closed under arbitrary unions. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is contra \(\pi \)gr-continuous if Y is regular, then f is \(\pi \)g-continuous.

Proof: Let x be an arbitrary point of X and V be an open set of Y containing f(x). The regularity of Y implies that there exists an open set \(W \in Y \) containing f(x) such that \(f(W) \not\subset V \). Since f is contra \(\pi \)gr-continuous, then there exists \(U \in \pi \)GRO(X, \tau) such that \(f(U) \not\subset f(W) \). Then \(f(U) \not\subset V \). Hence f is \(\pi \)gr-continuous.

Theorem 3.20
Suppose that \(\pi \)GR(X) is closed under arbitrary intersections. Then the following are equivalent for a function f: X → Y:

1) f is contra \(\pi \)gr-continuous.
2) The inverse image of every closed set of Y is \(\pi \)gr-open.
3) For each \(x \in X \) and each closed set \(B \) in Y with \(f(x) \in B \), there exists a \(\pi \)gr-open set \(A \) in X such that \(x \in A \) and \(f(A) \in B \).
4) \((\pi \)gr-cl(A)) \subset Ker f(A)\) for every subset \(A \) of X.
5) \((\pi \)gr-cl(f^1(B)) \subset f^1(Ker(B)))\) for every subset \(B \) of Y.

Proof:
(1) ⇒ (2) and (2) ⇒ (1) are obviously true.
(1) ⇒ (3): Let \(x \in X \) and \(B \) be a closed set in Y with \(f(x) \in B \). By (1), it follows that \(f^1(Y - B) = X - f^1(B) \) is \(\pi \)gr-closed and \(f^1(B) \) is \(\pi \)gr-open.
Take \(A = f^1(B) \). We obtain that \(x \in A \) and \(f(A) \subset B \).
(3) ⇒ (2): Let B be a closed set in Y with \(x \in B \). Since \(f(x) \in B \), by (3), there exists a \(\pi \)gr-open set A in X having x such that \(f(A) \subset B \). It follows that \(x \in A \cap f^1(B) \). Hence \(f^1(B) \) is \(\pi \)gr-open.
(2) ⇒ (1): Obvious.
(2) ⇒ (4): Let \(A \) be any subset of X. Let \(y \not\in Ker f(A) \). Then there exists a closed set \(F \) containing y such that \(f(A) \not\subset F \). Hence, we have \(A \cap f^1(F) = \emptyset \). Thus \(f(\pi \)gr-cl(A)) \subset F = \emptyset \) and \(y \not\in f(\pi \)gr-cl(A)) \) and hence \(f(\pi \)gr-cl(A)) \subset Ker f(A) \).
(4) ⇒ (5): Let B be any subset of Y. By (4), \(f(\pi \)gr-cl(f^1(B)) \subset Ker B \) and \(\pi \)gr-cl(f^1(B)) \subset f^1(Ker B) \).
(5) ⇒ (1): Let B be any open set of Y. By (5), \(\pi \)gr-cl(f^1(B)) \subset f^1(Ker B) = f^1(B) \).

IV. ALMOST CONTRA \(\pi \)GR-CONTINUOUS FUNCTIONS.

Definition 4.1
A function \(f : X \rightarrow Y \) is said to be almost contra \(\pi \)gr-continuous if \(f^1(V) \) is closed in X for each regular open set V of Y.

Definition 4.2
A function \(f : X \rightarrow Y \) is said to be almost contra \(\pi \)gr-continuous if \(f^1(V) \) is \(\pi \)gr-closed in X for each regular open set V of Y.

Definition 4.3
A topological space X is said to be \(\pi \)gr-\(T_1 \) space if for any pair of distinct points \(x \) and \(y \), there exists a \(\pi \)gr-open sets \(G \) and \(H \) such that \(x \in G \), \(y \not\in G \) and \(x \not\in H \), \(y \in H \).

www.ijres.org
Definition: 4.4
A topological space X is said to be πgr-T2-space if for any pair of distinct points x and y, there exists disjoint πgr-open sets G and H such that x ∉ G and y ∉ H.

Definition: 4.5
A topological space X is said to be πgr-Normal if each pair of disjoint closed sets can be separated by disjoint πgr-open sets.

Definition: 4.32
A function f : X → Y is called Weakly πgr-continuous if for each x ∈ X and each open set V of Y containing f(x), there exists U ∈ πgrO(X, x) such that f(U) ⊂ cl(V).

Definition: 4.7
A space X is said to be 1. πgr-compact if every πgr-open cover of X has a finite sub-cover.
2. Nearly compact if every regular open cover has a finite subcover.
3. Nearly lindelof if every regular open cover of X has a countable subcover.
4. S-lindelof if every cover of X by regular closed sets has a countable subcover.
5. S-closed if every regular closed cover of X has a finite subcover.

Definition: 4.8
A space X is said to be 1. πgr- Lindelof if every πgr-open cover of X has a countable subcover.
2. Mildly πgr-compact if every πgr-clopen cover of X has a finite subcover.
3. Mildly πgr-lindelof if every πgr-clopen cover of X has a countable subcover.
4. Countably πgr-compact if every countable cover of X by πgr-open sets has a finite subcover.

Theorem: 4.9
Suppose πgr-open set of X is closed under arbitrary unions. The following statements are equivalent for a function f : X → Y.
1) f is almost contra πgr- continuous.
2) f∗(F) ∈ πGR(Y) for every F ∈ RC(Y).
3) For each x ∈ X and each regular closed set F in Y containing f(x), there exists a πgr-open set U in X containing x such that f(U) ⊂ F.
4) For each x ∈ X and each regular open set V in Y not containing f(x), there exists a πgr-closed set K in X not containing x such that f∗(V) ⊂ K.
5) f∗(int(cl(G)) ⊂ πGRC(X, τ) for every closed subset F of Y.
6) f∗(cl(int(F))) ∈ πGRO(X, τ) for every closed subset F of Y.

Proof:
1)⇒(2): Let F ∈ RC(Y, σ). Then Y − f(F) ∈ πRO(Y, σ). Since f is almost contra πgr-continuous, f∗(Y − F) = X − f∗(F) ∈ πGR(X). Hence f∗(F) ∈ πGR(X).
2)⇒(1): Let F ∈ RO(Y, σ). Then Y = V ∪ RO(Y, σ). Since for each F ∈ RC(Y, σ),
f∗(Y − V) = X − f∗(V) ∈ πGRO(X)
f∗(V) ∈ πGR(X)
⇒ f is almost contra πgr-continuous.
3)⇒(2): Let F ∈ RC(Y, σ) and x ∈ f∗(F). From (3), there exists a πgr-open set U in X containing x such that U ⊂ f∗(F). We have f∗(F) = U ∪ {x ∈ f∗(F)}. Thus f∗(F) is πgr-open.
4)⇒(3): Let X be a regular open set in Y not containing f(x). Then Y − V is a regular closed set containing f(x).
By (3), there exists a πgr-open set U in X containing x such that f(U) ⊂ Y − V. Hence U ⊂ πGRC(X, τ) − f∗(V).
5)⇒(4): Take K ⊂ X − U. We obtain a πgr-closed set K in X not containing x such that f∗(V) ⊂ K.
6)⇒(5): Let f be a regular closed set in Y containing f(x). Then Y − F is a regular open set in Y containing f(x).
By (4), there exists a πgr-closed set K in X not containing x such that f∗(Y − F) ⊂ K, f∗(F) ⊂ K. Hence X − K ⊂ f∗(F). Hence f(X − K) ⊂ F. Take U = X − K, f(U) ⊂ F. Then U is a πgr-open set in X containing x such that f(U) ⊂ F.

(1)⇒(5): Let G be an open subset of Y. Since int(cl(G)) is regular open, then by (1),
f∗(int(cl(G)) ∈ πGRC(X, τ)
⇒ f is almost contra πgr-continuous.
(5)⇒(1): Let V ∈ RO(Y, σ). Then V is open in X. By (5), f∗(int(cl(V)) ∈ πGRC(X, τ)
⇒ f∗(V) ∈ πGR(X, τ)
⇒ f is almost contra πgr-continuous.
Theorem 4.10
Every contra πgr-continuous function is almost contra πgr-continuous but not conversely.
Proof: Straight forward.

Example 4.11
Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{c,d\}, \{a,c,d\}\}$, πgr-closed set=$\{\emptyset, X \setminus \{b\}$ \{a\}, \{b\}, \{c\}, \{d\}\}. Let $Y = \{a,b,c,d\}$, $\sigma = \{\emptyset, Y, \{a\}, \{b\}\}$. Let f be an identity map. The inverse image of open set in Y is not πgr-closed in X. But the inverse image of regular open set in Y is πgr-closed in X. Hence f is almost contra πgr-continuous and not contra πgr-continuous.

Theorem 4.12
Every regular set connected function is almost contra πgr-continuous but not conversely.

Example 4.13
Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$, $\tau' = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$. Let $Y = \{a,b,c\}$, $\sigma = \{\emptyset, Y, \{a\}, \{b\}\}$. Let f be an identity map. The inverse image of open set $\{a\}$ is not clopen in X. But the inverse image of open set in Y is πgr-closed in Y. Hence f is almost contra πgr-continuous and not regular set connected.

Theorem 4.14
Let $f:X \to Y$, $g:Y \to Z$ be two functions. Then the following properties hold.
a) If f is almost contra πgr-continuous and g is regular set connected, then $gof : X \to Z$ is almost contra πgr-continuous and almost πgr-continuous.
b) If f is almost contra πgr-continuous and g is perfectly continuous, then $gof : X \to Z$ is πgr-continuous and contra πgr-continuous.
c) If f is contra πgr-continuous and g is regular set connected, then $gof : X \to Z$ is πgr-continuous and almost πgr-continuous.

Proof:
a) Let $V \in \text{RO}(Z)$. Since g is regular set connected, $g^{-1}(V)$ is clopen in Y. Since f is almost contra πgr-continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is πgr-open and πgr-closed. Therefore, (gof) is almost contra πgr-continuous and almost πgr-continuous.
b) Let V be open in Z. Since g is perfectly continuous, $g^{-1}(V)$ is clopen in Y. Since f is almost contra πgr-continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is πgr-open and πgr-closed. Hence gof is contra πgr-continuous and πgr-continuous.
c) Let $V \in \text{RO}(Z)$. Since g is regular set connected, $g^{-1}(V)$ is clopen in Y. Since f is a contra πgr-continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is πgr-closed in X. Therefore, (gof) is πgr-continuous and almost πgr-continuous.

Theorem 4.15
If $f:X \to Y$ is an almost contra πgr-continuous, injection and Y is weakly hausdorff, then X is πgr-T_1.

Proof: Suppose Y is weakly hausdorff. For any distinct points x and y in X, there exists V and W regular closed sets in Y such that $f(x) \notin V, f(y) \notin W$ and $f(x) \notin W$. Since f is almost contra πgr-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are πgr-open subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(V), y \notin f^{-1}(W)$ and $x \notin f^{-1}(W)$. This shows that X is πgr-T_1.

Corollary 4.16
If $f:X \to Y$ is a contra πgr-continuous injection and Y is weakly hausdorff, then X is πgr-T_1.

Proof: Since every contra πgr-continuous function is almost contra πgr-continuous, the result of this corollary follows by using the above theorem.

Theorem 4.17
If $f:X \to Y$ is an almost contra πgr-continuous injective function from space X to a ultra Hausdorff space Y, then X is πgr-T_2.

Proof: Let x and y be any two distinct points in X. Since f is injective, $f(x) \neq f(y)$ and Y is Ultra Hausdorff space, there exists disjoint clopen sets U and V of Y containing $f(x)$ and $f(y)$ respectively. Then $x \in f^{-1}(U), y \notin f^{-1}(V), y \notin f^{-1}(W)$ and $x \notin f^{-1}(V)$. This shows that X is πgr-T_2.

Theorem 4.18
If $f:X \to Y$ is an almost contra πgr-continuous injection and Y is Ultra Normal. Then X is πgr-normal.

Proof: Let G and H be disjoint closed subsets of X. Since f is closed and injective, $f(E)$ and $f(F)$ are disjoint closed sets in Y. Since Y is Ultra Normal, there exists disjoint clopen sets U and V in Y such that $f(G) \subseteq U$ and $f(H) \subseteq V$. Hence $G \cap f^{-1}(U), H \cap f^{-1}(V)$. Since f is an almost contra πgr-continuous injective function, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint πgr-open sets in X. Therefore, X is πgr-T_2.

Theorem 4.20
If $f:X \to Y$ is an almost contra πgr-continuous surjection and X is πgr-connected space, then Y is connected.
Proof: Let \(f: X \to Y \) be an almost contra \(\pi gr \)-continuous surjection and \(X \) is \(\pi gr \)-connected space. Suppose \(Y \) is not connected space, then there exists disjoint open sets \(U \) and \(V \) such that \(Y = U \cup V \). Therefore, \(U \) and \(V \) are clopen in \(Y \). Since \(f \) is almost contra \(\pi gr \)-continuous, \(f'(U) \) and \(f'(V) \) are \(\pi gr \)-open sets in \(X \). Moreover, \(f'(U) \) and \(f'(V) \) are non-empty disjoint \(\pi gr \)-open sets and \(X = f'(U) \cup f'(V) \). This is a contradiction to the fact that \(X \) is \(\pi gr \)-connected space. Therefore, \(Y \) is connected.

Theorem 4.2.1

If \(X \) is \(\pi gr \)-Ultra connected and \(f: X \to Y \) is an almost contra \(\pi gr \)-continuous surjective, then \(Y \) is hyper connected.

Proof: Let \(X \) be a \(\pi gr \)-Ultra connected and \(f: X \to Y \) is an almost contra \(\pi gr \)-continuous surjection. Suppose \(Y \) is not hyper connected. Then there exists an open set \(V \) such that \(V \) is not dense in \(Y \). Therefore, there exists non-empty regular open subsets \(B_1 = \text{int}(\text{cl}(V)) \) and \(B_2 = Y - \text{cl}(V) \) in \(Y \). Since \(f \) is an almost contra \(\pi gr \)-continuous surjection, \(f'(B_1) \) and \(f'(B_2) \) are disjoint \(\pi gr \)-closed sets in \(X \). This is a contradiction to the fact that \(X \) is \(\pi gr \)-ultra connected. Therefore, \(Y \) is hyper connected.

Theorem 4.2.2

If a function \(f: X \to Y \) is an almost contra \(\pi gr \)-continuous, then \(f \) is weakly \(\pi gr \)-continuous function.

Proof: Let \(x \in X \) and \(V \) be an open set in \(Y \) containing \(f(x) \). Then \(\text{cl}(V) \) is regular closed in \(Y \) containing \(f(x) \). Since \(f \) is an almost contra \(\pi gr \)-continuous function for every regular closed set \(f'(Y) \) is \(\pi gr \)-open in \(X \). Hence \(f'(\text{cl}(V)) \) is \(\pi gr \)-open set in \(X \) containing \(x \). Set \(U = f'(\text{cl}(V)) \), then \(f(U) \subset f'(\text{cl}(V)) \subset \text{cl}(V) \). This shows that \(f \) is weakly \(\pi gr \)-continuous function.

Theorem 4.2.3

Let \(f: X \to Y \) be an almost contra \(\pi gr \)-continuous surjection. Then the following properties hold:

1. If \(X \) is \(\pi gr \)-compact, then \(Y \) is \(S \)-closed.
2. If \(X \) is countably \(\pi gr \)-closed, then \(Y \) is countably \(S \)-closed.
3. If \(X \) is \(\pi gr \)-lindelöf, then \(Y \) is \(S \)-lindelöf.

Proof:

1) Let \(\{ V_\alpha : \alpha \in I \} \) be any regular closed cover of \(Y \). Since \(f \) is almost contra \(\pi gr \)-continuous, \(\{ f^{-1}(V_\alpha) : \alpha \in I \} \) is \(\pi gr \)-open cover of \(X \). Since \(X \) is \(\pi gr \)-compact, there exists a finite subset \(I_0 \) of \(I \) such that \(X = \cup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \} \). Since \(f \) is surjective, \(Y = \cup \{ V_\alpha : \alpha \in I_0 \} \) is finite subcover for \(Y \). Therefore, \(Y \) is countably \(S \)-closed.

2) Let \(\{ V_\alpha : \alpha \in I \} \) be any countable regular closed cover of \(Y \). Since \(f \) is almost contra \(\pi gr \)-continuous, \(\{ f^{-1}(V_\alpha) : \alpha \in I \} \) is \(\pi gr \)-open cover of \(X \). Since \(X \) is \(\pi gr \)-lindelöf, there exists a finite subset \(I_0 \) of \(I \) such that \(X = \cup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \} \). Since \(f \) is surjective, \(Y = \cup \{ V_\alpha : \alpha \in I_0 \} \) is finite subcover of \(Y \). Therefore, \(Y \) is \(S \)-lindelöf.

3) Let \(\{ V_\alpha : \alpha \in I \} \) be any regular closed cover of \(Y \). Since \(f \) is almost contra \(\pi gr \)-continuous, \(\{ f^{-1}(V_\alpha) : \alpha \in I \} \) is \(\pi gr \)-open cover of \(X \). Since \(X \) is \(\pi gr \)-lindelöf, there exists a countable subset \(I_0 \) of \(I \) such that \(X = \cup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \} \). Since \(f \) is surjective, \(Y = \cup \{ V_\alpha : \alpha \in I_0 \} \) is finite subcover of \(Y \). Therefore, \(Y \) is \(S \)-lindelöf.

Theorem 4.2.4

Let \(f: X \to Y \) be an almost contra \(\pi gr \)-continuous and almost continuous surjection. Then the following properties hold.

1) If \(X \) is mildly \(\pi gr \)-closed, then \(Y \) is nearly compact.
2) If \(X \) is mildly countably \(\pi gr \)-compact, then \(Y \) is nearly countably compact.
3) If \(X \) is mildly \(\pi gr \)-lindelöf, then \(Y \) is nearly lindelöf.

Proof:

1) Let \(\{ V_\alpha : \alpha \in I \} \) be any open cover of \(Y \). Since \(f \) is almost contra \(\pi gr \)-continuous and almost \(\pi gr \)continuous function, \(\{ f^{-1}(V_\alpha) : \alpha \in I \} \) is \(\pi gr \)-open cover of \(X \). Since \(X \) is mildly \(\pi gr \)-compact, there exists a finite subset \(I_0 \) of \(I \) such that \(X = \cup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \} \). Since \(f \) is surjective, \(Y = \cup \{ V_\alpha : \alpha \in I_0 \} \) is finite subcover for \(Y \). Therefore, \(Y \) is nearly compact.

2) Similar to that of (1).

3) Let \(\{ V_\alpha : \alpha \in I \} \) be any regular open cover of \(Y \). Since \(f \) is almost contra \(\pi gr \)-continuous and almost \(\pi gr \)continuous function, \(\{ f^{-1}(V_\alpha) : \alpha \in I \} \) is \(\pi gr \)-open cover of \(X \). Since \(X \) is mildly \(\pi gr \)-lindelöf, there exists a countable subset \(I_0 \) of \(I \) such that \(X = \cup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \} \). Since \(f \) is surjective, \(Y = \cup \{ V_\alpha : \alpha \in I_0 \} \) is finite subcover for \(Y \). Therefore, \(Y \) is nearly lindelöf.
REFERENCES