Unique Common Fixed Point Theorem for Three Pairs of Weakly Compatible Mappings Satisfying Generalized Contractive Condition of Integral Type

Kavita B. Bajpai, Manjusha P. Gandhi
Karmaveer Dadasahab Kannamwar College of Engineering, Nagpur, India
Yeshwantrao Chavan College of Engineering, Wanadongri, Nagpur, India

Abstract: We prove some unique common fixed point result for three pairs of weakly compatible mappings satisfying a generalized contractive condition of Integral type in complete G-metric space. The present theorem is the improvement and extension of Vishal Gupta and Naveen Mani [5] and many other results existing in literature.

Keywords: Fixed point, Complete G- metric space, G-Cauchy sequence, Weakly compatible mapping, Integral Type contractive condition.

I. Introduction

Mustafa in collaboration with Sims [10] introduced a new notation of generalized metric space called G- metric space in 2006. He proved many fixed point results for a self mapping in G- metric space under certain conditions.

Now we give some preliminaries and basic definitions which are used through-out the paper.

Definition 1.1: Let X be a non empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following properties:

(G_1) \hspace{1cm} $G(x, y, z) = 0$ if \hspace{0.5cm} $x = y = z$

(G_2) \hspace{1cm} $0 < G(x, x, y)$ for all $x, y \in X$, with \hspace{0.5cm} $x \neq y$

(G_3) \hspace{1cm} $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with \hspace{0.5cm} $y \neq z$

(G_4) \hspace{1cm} $G(x, y, z) = G(x, z, y) = G(y, z, x)$ \hspace{0.5cm} (Symmetry in all three variables)

(G_5) \hspace{1cm} $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$ \hspace{0.5cm} (rectangle inequality)

Then the function G is called a generalized metric space, or more specially a G- metric on X, and the pair (X, G) is called a G- metric space.

Definition 1.2: Let (X, G) be a G- metric space and let $\{x_n\}$ be a sequence of points of X, a point $x \in X$ is said to be the limit of the sequence $\{x_n\}$, if $\lim_{m,n \to \infty} G(x, x_n, x_m) = 0$, and we say that the sequence $\{x_n\}$ is G - convergent to x or $\{x_n\}$ G - converges to x.

Unique Common Fixed Point Theorem for Three Pairs of Weakly Compatible Mappings Satisfying

Thus, \(x_n \to x \) in a \(G \)-metric space \((X, G)\) if for any \(\varepsilon > 0 \) there exists \(k \in \mathbb{N} \) such that \(G(x, x_n, x_m) < \varepsilon \), for all \(m, n \geq k \).

Proposition 1.3: Let \((X, G)\) be a \(G \)-metric space. Then the following are equivalent:

i) \(\{x_n\} \) is \(G \)-convergent to \(x \)

ii) \(G(x_n, x_n, x) \to 0 \) as \(n \to +\infty \)

iii) \(G(x_n, x, x) \to 0 \) as \(n \to +\infty \)

iv) \(G(x_n, x_m, x) \to 0 \) as \(n, m \to +\infty \)

Proposition 1.4: Let \((X, G)\) be a \(G \)-metric space. Then for any \(x, y, z, a \in X \) it follows that

i) If \(G(x, y, z) = 0 \) then \(x = y = z \)

ii) \(G(x, y, z) \leq G(x, x, y) + G(x, x, z) \)

iii) \(G(x, y, y) \leq 2G(y, x, x) \)

iv) \(G(x, y, z) \leq G(x, a, z) + G(a, y, z) \)

v) \(G(x, y, z) \leq \frac{2}{3}(G(x, y, a) + G(x, a, z) + G(a, y, z)) \)

vi) \(G(x, y, z) \leq (G(x, a, a) + G(y, a, a) + G(z, a, a)) \)

Definition 1.5: Let \((X, G)\) be a \(G \)-metric space. A sequence \(\{x_n\} \) is called a \(G \)-Cauchy sequence if for any \(\varepsilon > 0 \) there exists \(k \in \mathbb{N} \) such that \(G(x_n, x_m, x_l) < \varepsilon \) for all \(m, n, l \geq k \), that is \(G(x_n, x_m, x_l) \to 0 \) as \(n, m, l \to +\infty \).

Proposition 1.6: Let \((X, G)\) be a \(G \)-metric space. Then the following are equivalent:

i) The sequence \(\{x_n\} \) is \(G \)-Cauchy;

ii) For any \(\varepsilon > 0 \) there exists \(k \in \mathbb{N} \) such that \(G(x_n, x_m, x_l) < \varepsilon \) for all \(m, n, l \geq k \)

Proposition 1.7: A \(G \)-metric space \((X, G)\) is called \(G \)-complete if every \(G \)-Cauchy sequence is \(G \)-convergent in \((X, G)\).

Proposition 1.8: Let \((X, G)\) be a \(G \)-metric space. Then the function \(G(x, y, z) \) is jointly continuous in all three of its variables.

Definition 1.9: Let \(f \) and \(g \) be two self – maps on a set \(X \). Maps \(f \) and \(g \) are said to be commuting if \(fgx = gfx \), for all \(x \in X \)

Definition 1.10: Let \(f \) and \(g \) be two self – maps defined on a set \(X \), then \(f \) and \(g \) are said to be weakly compatible if they commute at coincidence points. That is if \(fu = gu \) for some \(u \in X \), then \(fgx = gfx \).

The main aim of this paper is to prove a unique common fixed point theorem for three pairs of weakly compatible mappings satisfying integral type contractive condition in a complete \(G \)-metric space.

The result is the extension of the following theorem of Vishal Gupta and Naveen Mani [5].

II. Theorem

Let \(S \) and \(T \) be self compatible maps of a complete metric space \((X, d)\) satisfying the following conditions

\[
\psi \int_0^d S(x, y) \, dt \leq \psi \int_0^{d(Tx, Ty)} \phi(t) \, dt - \phi \int_0^{d(Tx, Ty)} \phi(t) \, dt
\]

for each \(x, y \in X \) where \(\psi : [0, +\infty) \to [0, +\infty) \) is a continuous and non decreasing function and \(\phi : [0, +\infty) \to [0, +\infty) \) is a lower semi continuous and non decreasing function such that \(\psi(t) = \phi(t) = 0 \) if and only if \(t = 0 \) also \(\phi : [0, +\infty) \to [0, +\infty) \) is a “Lebesgue-integrable function” which is summable on each
compact subset of R^+, nonnegative, and such that for each $\varepsilon > 0$, $
\int_0^\varepsilon \varphi(t)\,dt > 0$. Then S and T have a unique common fixed point.

III. MAIN RESULT

Theorem 2.1 : Let (X, G) be a complete G-metric space and $L, M, N, P, Q, R : X \to X$ be mappings such that

i) $L(X) \subset P(X)$, $M(X) \subset Q(X)$, $N(X) \subset R(X)$

ii) $\xi \left\{ \begin{array}{l} \frac{G(L_x, M_x, N_x)}{G(P_x, Q_x, R_x)} \int_0^f (t)\,dt \leq \eta \left\{ \begin{array}{l} \frac{G(P_x, Q_x, R_x)}{G(L_x, M_x, N_x)} \int_0^f (t)\,dt \end{array} \right. \\
\end{array} \right.$ \hspace{1cm} \text{-------------------(2.1.1)}$

for all $x, y, z \in X$ where $\xi : [0, \infty) \to [0, \infty)$ is a continuous and non-decreasing function, $\eta : [0, \infty) \to [0, \infty)$ is a lower semi continuous and non-decreasing function such that $\xi(t) = \eta(t) = 0$ if and only if $t = 0$, also $f : [0, \infty) \to [0, \infty)$ is a Lebesgue integrable function which is summable on each compact subset of R^+, non negative and such that for each $\varepsilon > 0$, $
\int_0^\varepsilon f(t)\,dt > 0$

iii) The pairs (L, P), (M, Q), (N, R) are weakly compatible.

Then L, M, N, P, Q, R have a unique common fixed point in X.

Proof : Let x_0 be an arbitrary point of X and define the sequence $\{x_n\}$ in X such that

$y_m = Lx_m = P_{m+1}$, $y_{n+1} = Mx_{n+1} = Qx_{n+2}$, $y_{n+2} = Nx_{n+2} = Rx_{n+3}$

Consider $\xi \left\{ \begin{array}{l} \frac{G(L_{x_n}, M_{x_{n+1}}, N_{x_{n+2}})}{G(P_{x_{n+2}}, Q_{x_{n+3}}, R_{x_{n+4}})} \int_0^f (t)\,dt \leq \eta \left\{ \begin{array}{l} \frac{G(P_{x_{n+2}}, Q_{x_{n+3}}, R_{x_{n+4}})}{G(L_{x_n}, M_{x_{n+1}}, N_{x_{n+2}})} \int_0^f (t)\,dt \end{array} \right. \\
\end{array} \right.$ \hspace{1cm} \text{-----------------(2.1.2)}$

Since ξ is continuous and has a monotone property.

$\therefore \int_0^\xi f(t)\,dt \leq \int_0^\eta f(t)\,dt$ \hspace{1cm} \text{-----------------(2.1.3)}$

Let us take $\delta_n = \int_0^{G(y_m, y_{n+1}, y_{n+2})} f(t)\,dt$, then it follows that δ_n is monotone decreasing and lower bounded sequence of numbers.

Therefore there exists $k \geq 0$ such that $\delta_n \to k$ as $n \to \infty$. Suppose that $k > 0$

Taking limit as $n \to \infty$ on both sides of (2.1.2) and using that η is lower semi continuous, we get $\xi(k) \leq \xi(k) - \eta(k) < \xi(k)$, which is a contradiction. Hence $k = 0$.

This implies that $\delta_n \to 0$ as $n \to \infty$ i.e. $\int_0^\delta f(t)\,dt \to 0$ as $n \to \infty$. \hspace{1cm} \text{---------}(2.1.4)$
Unique Common Fixed Point Theorem for Three Pairs of Weakly Compatible Mappings Satisfying

Now, we prove that \(\{y_n \} \) is a G-Cauchy sequence. On the contrary, suppose it is not a G-Cauchy sequence.

\[\therefore \text{There exists } \varepsilon > 0 \text{ and subsequences } \{y_{m(i)}\} \text{ and } \{y_{n(i)}\} \text{ such that for each positive integer } i, n(i) \text{ is minimal in the sense that}, \]
\[G(y_{n(i)}, y_{m(i)}), y_{m(i)}), y_{m(i)}) \leq \varepsilon \text{ and } G(y_{n(i)}, y_{m(i)}), y_{m(i)}) < \varepsilon \]

Now, \(\varepsilon \leq G(y_{n(i)}, y_{m(i)}), y_{m(i)}) \leq G(y_{n(i)}, y_{m(i)}), y_{m(i)}) + G(y_{m(i)}), y_{m(i)}), y_{m(i)}) \quad \text{---------(2.1.5)} \]

Let \(0 < \alpha = \int_0^\infty f(t) \, dt \leq \int_0^\alpha f(t) \, dt \leq \int_0^\infty G(y_{n(i)}, y_{m(i)}), y_{m(i)}) \]

Taking \(i \to \infty \), and using (2.1.4) , we get \(\lim_{i \to \infty} \int_0^\infty f(t) \, dt = \alpha \quad \text{---------}(2.1.6) \)

Now, using rectangular inequality, we have

\[G(y_{n(i)}, y_{m(i)}), y_{m(i)}) \leq G(y_{n(i)}, y_{n(i)}), y_{n(i)}) + G(y_{n(i)}, y_{m(i)}), y_{m(i)}) + G(y_{n(i)}, y_{m(i)}), y_{m(i)}) \quad \text{---------(2.1.7)} \]

\[G(y_{n(i)}, y_{n(i)}), y_{n(i)}) \leq G(y_{n(i)}, y_{n(i)}), y_{n(i)}) + G(y_{n(i)}, y_{n(i)}), y_{n(i)}) + G(y_{n(i)}, y_{n(i)}), y_{n(i)}) \quad \text{---------(2.1.8)} \]

\[\therefore \int_0^\infty f(t) \, dt \leq \int_0^\infty f(t) \, dt \]

Taking limit as \(i \to \infty \) and using (2.1.4) , (2.1.6) we get

\[\lim_{i \to \infty} \int_0^\infty f(t) \, dt \leq \alpha \quad \text{---------}(2.1.9) \]

Hence \(\{y_n\} \) is a G-Cauchy sequence. Since \((X, G)\) is a complete G-metric space, there exists a point \(u \in X \) such that \(n \to \infty \), \(y_n = u \)

\[\lim_{n \to \infty} Lx_n = \lim_{n \to \infty} Px_{n+1} = u \quad \lim_{n \to \infty} Mx_{n+1} = \lim_{n \to \infty} Qx_{n+2} = u \quad \lim_{n \to \infty} Nx_{n+2} = \lim_{n \to \infty} Rx_{n+3} = u \]

As \(Lx_n \to u \) and \(Px_{n+1} \to u \), therefore we can find some \(h \in X \) such that \(Qh = u \).

\[\xi \left\{ \int_0^\alpha f(t) \, dt \right\} \leq \xi \left\{ \int_0^\alpha f(t) \, dt \right\} - \eta \left\{ \int_0^\alpha f(t) \, dt \right\} \]

\[\therefore \text{Taking limit as } n \to \infty \text{, we get } \xi \left\{ \int_0^\alpha f(t) \, dt \right\} \leq \xi(0) - \eta(0) \]
Consider, \(\xi \left\{ \int_0^t f(t) \, dt \right\} \geq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \). On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

And therefore, \(Lu = Pu \) i.e. \(u \) is the fixed point of \(L \).

Thus we get \(Nw = Rw = v \) i.e. \(v \) is the coincidence point of \(N \) and \(R \).

Since the pair of maps \(N \) and \(R \) are weakly compatible, we have \(NRw = RNw \) i.e. \(Nu = Ru \)

Now, we prove that \(u \) is a fixed point of \(M \).

Consider, \(\xi \left\{ \int_0^t f(t) \, dt \right\} \geq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \). On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Hence, \(Mh = u \).

Hence, \(Mh = Qh = u \) i.e. \(h \) is the point of coincidence of \(M \) and \(Q \).

Since the pair of maps \(M \) and \(Q \) are weakly compatible, we write \(MQh = QMh \) i.e. \(Mu = Qu \).

Also, \(Mx_{n+1} \to u \) and \(Qx_{n+1} \to u \), \(\therefore \) we can find some \(v \in X \) such that \(Pv = u \).

\[\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \]

On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Hence, \(Lv = u \). Therefore we can find some \(w \in X \) such that \(Rw = u \).

\[\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \]

On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

i.e. \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Thus we get \(Nu = Rw = v \) i.e. \(v \) is the coincidence point of \(N \) and \(R \).

Since the pair of maps \(N \) and \(R \) are weakly compatible, we have \(NRw = RNw \) i.e. \(Nu = Ru \)

Now, we show that \(u \) is the fixed point of \(L \).

Consider, \(\xi \left\{ \int_0^t f(t) \, dt \right\} \geq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \). On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Hence, \(Mh = u \). Therefore we can find some \(w \in X \) such that \(Rw = u \).

\[\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \]

On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Hence, \(Lv = u \). Therefore we can find some \(w \in X \) such that \(Rw = u \).

\[\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \]

On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Hence, \(Mh = u \). Therefore we can find some \(w \in X \) such that \(Rw = u \).

\[\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \]

On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Hence, \(Mh = u \). Therefore we can find some \(w \in X \) such that \(Rw = u \).

\[\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \]

On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)

Hence, \(Mh = u \). Therefore we can find some \(w \in X \) such that \(Rw = u \).

\[\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi \left\{ \int_0^t f(t) \, dt \right\} - \eta \left\{ \int_0^t f(t) \, dt \right\} \]

On taking limit as \(n \to \infty \), we get \(\xi \left\{ \int_0^t f(t) \, dt \right\} \leq \xi(0) - \eta(0) \)
Unique Common Fixed Point Theorem for Three Pairs of Weakly Compatible Mappings Satisfying

\[\xi \left\{ \int_0^\infty f(t) \, dt \right\} < \xi \left\{ \int_0^\infty f(t) \, dt \right\}, \text{ which is a contradiction.} \therefore \text{ we get } Mu = u \]

Hence \(Mu = Qu = u \) i.e. \(u \) is fixed point of \(M \) and \(Q \).

At last we prove that \(u \) is fixed point of \(N \).

Consider, \[\xi \left\{ \int_0^\infty f(t) \, dt \right\} \leq \xi \left\{ \int_0^\infty f(t) \, dt \right\} - \eta \left\{ \int_0^\infty f(t) \, dt \right\} \]

i.e. \[\xi \left\{ \int_0^\infty f(t) \, dt \right\} < \xi \left\{ \int_0^\infty f(t) \, dt \right\}, \text{ which means } \xi \left\{ \int_0^\infty f(t) \, dt \right\} < \xi \left\{ \int_0^\infty f(t) \, dt \right\} \text{ as } Nu = Ru. \]

Which implies that \(Nu = u \). Hence we get \(Nu = Ru = u \).

i.e. \(u \) is fixed point of \(N \) and \(R \).

Thus \(u \) is the common fixed point of \(L, M, N, P, Q \) and \(R \).

Now, we prove that \(u \) is the unique common fixed point of \(L, M, N, P, Q \) and \(R \).

If possible, let us assume that \(\mu \) is another fixed point of \(L, M, N, P, Q \) and \(R \).

\[\therefore \xi \left\{ \int_0^\infty f(t) \, dt \right\} = \xi \left\{ \int_0^\infty f(t) \, dt \right\} - \eta \left\{ \int_0^\infty f(t) \, dt \right\} \]

i.e. \[\xi \left\{ \int_0^\infty f(t) \, dt \right\} < \xi \left\{ \int_0^\infty f(t) \, dt \right\}, \text{ which is again a contradiction.} \]

Hence finally we will have \(u = \mu \).

Thus \(u \) is the unique common fixed point of \(L, M, N, P, Q \) and \(R \).

Corollary 2.2: Let \((X, G)\) be a complete G-metric space and \(L, M, N, P : X \to X \) be mappings such that

i) \(\xi \left\{ \int_0^\infty f(t) \, dt \right\} < \xi \left\{ \int_0^\infty f(t) \, dt \right\}, \text{ which is a contradiction.} \therefore \text{ we get } Mu = u \]

ii) \(\xi \left\{ \int_0^\infty f(t) \, dt \right\} \leq \xi \left\{ \int_0^\infty f(t) \, dt \right\} - \eta \left\{ \int_0^\infty f(t) \, dt \right\} \]

for all \(x, y, z \in X \) where \(\xi : [0, \infty) \to [0, \infty) \) is a continuous and non-decreasing function , \(\eta : [0, \infty) \to [0, \infty) \) is a lower semi continuous and non-decreasing function such that \(\xi(t) = \eta(t) = 0 \) if and only if \(t = 0 \), also \(f : [0, \infty) \to [0, \infty) \) is a Lebesgue integrable function which is summable on each compact subset of \(R^+ \), non negative and such that for each \(\varepsilon > 0 \),

\[\int_0^\varepsilon f(t) \, dt > 0 \]

iii) The pairs \((L, P)\), \((M, P)\), \((N, P)\) are weakly compatible.

Then \(L, M, N, P \) have a unique common fixed point in \(X \).

Proof: By taking \(P = Q = R \) in Theorem 2.1 we get the proof.

Corollary 2.3: Let \((X, G)\) be a complete G-metric space and \(L, P : X \to X \) be mappings such that
Unique Common Fixed Point Theorem for Three Pairs of Weakly Compatible Mappings Satisfying

\[L(X) \subseteq P(X) \]

\[\xi(t) = \eta(t) = 0 \text{ if and only if } t = 0, \]

\[\int_{0}^{\xi} f(t) \, dt > 0 \]

iii) The pair \((L, P)\) is weakly compatible.

\[\text{Then } L, P \text{ have a unique common fixed point in } X. \]

Proof: By substituting \(L = M = N \) and \(P = Q = R \) in Theorem 2.1 we get the proof.

Remark: The Corollary 2.3 is the result proved by Vishal Gupta and Naveen Mani [5] in complete metric space.

IV. References

