Schwarz-Christoffel Transformation On A Half Plane

Abdualah Ibrahim Sultan
Mathematics Department of Brawijaya University Malang, Indonesia. Mathematics Department of, Faculty of Science, Khoms, Al-Mergeb University , Khoms, Libya.

Abstract

The Schwarz-Christoffel transformation has been studied by many reseachers due to a huge of its application in solving Laplace's equations and studying fluid flow phenomenas (see [3],[4]). The proof of this theorem can find in (see for example [5]). Their method depend on the tangent of $T_{j}=1+i 0$ and the rotation of T_{j} from 0 to π on points $(x, 0)$. In this paper we would like to prove the ShwarzChristoffeltransformation directly by using the arguments identity of complex number, rotation of it from 0 to 2π and conformal mapping.

Keywords : Complex function, half plane, polygon, analytic function, transformation, Conformal mapping.

I. INTRODUCTION

The Schwarz-Christoffel transformation known as a map from the upper half-plane to simply connected polygon with or without corners at infinity in the complex planes.The Schwarz-Christoffel transformation has been studied by many reseachers due to a huge of its application for example used in physical applications involving fluid movement, heat conduction and electrostatic pontential, as well asthe studying of Laplace's equations (see [3],[4]) and also from mathematical point of views (see [1],[2],[6]).

In this paper we study about the proof of the Schwarz-Christoffel theorem. The prove of this theorem can found in (see for example [5]). Their method depend on the tangent of $T_{j}=1+i 0$ and the rotation of T_{j} from 0 to π on points $(x, 0)$. In this paper we would like to prove the Shwarz-Christoffel transformation directly by using the arguments identity of complex number, rotation of it from 0 to 2π and conformal mapping.

II. PRELIMINARIES

We need to review some important definitions and theorems which will be used later from complex analysis to understand the Schwarz-Christoffeltheorem.These definitions and theorems below can be found in the refences (see [3], [4]).
Definition 2.1 A complex number is a number of the form $z=a+i b$ where the imaginary unit is defined as $i=\sqrt{-1}$ and a is the real part of $z, a=\operatorname{Re}(z)$, and b is the imaginary part of $z, b=\operatorname{Im}(z)$. The set of all complex number is written by C.

Definition 2.2. Arguments of complex number

Let r and θ be polar coordinates of the point (a, b) that corresponds to a nonzero complex number $z=a+i b$. Since $a=\cos \theta$ and $b=\sin \theta$, the number zcan be written in polar form as $z=r(\cos \theta+i \sin \theta)=|z| e^{i \theta}$, where $|z|$ is a positive real number called the modulus of z, and θ is real number called the argument of z, and written by arg $\quad z$.The real number θ represents the angle and measured in radians.
Theorem 2.1. Law of arguments of products .
Let $b, c \in C$. Then

$$
\begin{equation*}
\arg b c=\arg \quad \mathrm{b}+\arg \quad \mathrm{c} . \tag{1.1}
\end{equation*}
$$

Theorem 2.2. Law of arguments of power

Let $b, c \in C$. Then

$$
\begin{equation*}
\arg b^{c}=c \arg b \tag{1.2}
\end{equation*}
$$

Definition 2.3.Complex Function. A complex function is a function f whose domain and range are subsets of the set C of complex numbers.
Definition 2.4.Conformal mapping. Let $w=f(z)$ be a complex mapping defined in a domain D and let z_{0} be a point in D. Then we say that $w=f(z)$ is conformal at z_{0} if for every pair of smoothoriented curves C_{1} and C_{2} in D intersecting at z_{0} the angle between C_{1} and C_{2} at z_{0} is equal tothe angle between the image curves C_{1}^{\prime} and $C^{\prime}{ }_{2}$ at $f\left(z_{0}\right)$ in both magnitude and sense.

Figure 1.1 The angle between C_{1} and C_{2} (see [4])
In other words a mapping $w=f(z)$ preserves both angle and shape but it cannot in general the size. Moreover a mapping that is conformal at every point in a domain D is called conformal in D , the conformal mapping relies on the properties of analytic function. The angle between any two intersecting arcs in the z-plane is equal to the angle between the images of the arcs in the w-plane under a linear mapping.
Definition 2.5. Analytic Function.A function $f(z)$ is said to be analytic in a region R of the complex plane if $f(z)$ has a derivative at each point of R. In addition, analytic function is conformal at z_{0} if and only if $f^{\prime}(z) \neq$ 0.

Definition 2.6.Polygon. A polygon is a plane figure that is bounded by closed path, composed of a finite sequence of straight-line segments (i.e. a closed polygonal chain or circuit). These segments are called its edges or sides, and the points where two edges meet are the polygon's vertices (singular: vertex) or corners.

III. MAIN THEOREM

Theorem (Schwarz-christoffel)

Let P be a polygon in the w-plane with vertices $w_{1}, w_{2}, \ldots, w_{n}$ and exterior angles α_{k}, where $-\pi<\alpha_{k}<$ π.There exists a one-to-one conformal mapping $w=f(z)$ from the upper half plane, $\operatorname{Im}(z)>0$ onto G that satisfies the boundary conditions in equations $w_{k}=f\left(x_{k}\right)$ for $k=1,2 \ldots . n-1$ and $w_{n}=f(\infty)$, where $x_{1}<x_{2}<x_{3}<\cdots<x_{n-1}<\infty$. Derivative $f^{\prime}(z)$ is

$$
\begin{equation*}
\left.f^{\prime}(z)=A\left(z-x_{1}\right)\right)^{\frac{-\alpha_{1}}{\pi}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{\pi}} \ldots\left(z-x_{n-1}\right)^{\frac{-\alpha_{n-1}}{\pi}} \tag{1.3}
\end{equation*}
$$

and the function f can be expressed as an indefinite integral

$$
\begin{equation*}
\left.f(z)=B+A \int f^{\prime}(z)=A\left(z-x_{1}\right)\right)^{\frac{-\alpha_{1}}{\pi}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{\pi}} \ldots\left(z-x_{n-1}\right)^{\frac{-\alpha_{n-1}}{\pi}} d z \tag{1.4}
\end{equation*}
$$

where A and B are suitably chosen constants. Two of the points $\left\{x_{k}\right\}$ may be chosen arbitrarily, and the constants A and B determine the size and position of P.

IV. PROVE OF THE THEOREM

A transformation $w=f(z)$ constructed by mapping each point on the x axis in z-plane z on w-plane, with $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ are the points on the x-axis and $x_{1}<x_{2}<x_{3}<\cdots<x_{n-1}<x_{n}$ where the points on the plane z is the domain of the transformation. These points are mapped in to points on the n-side, is $w_{j}=$ $f\left(x_{j}\right), j=1,2, \ldots, n-1$ and $w_{n}=f(\infty)$ in
w-plane. The function f chosen so that $\arg f^{\prime}(z)$ different constant value

$$
\begin{equation*}
f^{\prime}(z)=A\left(z-x_{1}\right)^{-k_{1}}\left(z-x_{2}\right)^{-k_{2}} \ldots\left(z-x_{n-1}\right)^{-k_{n-1}} \tag{1.5}
\end{equation*}
$$

where A is a complex constant and each k_{j}, with $j=1,2,3, n-1$ are real constants.
From equation (1.5) we taking the absolute value, then we have

$$
\begin{aligned}
& =\left|A\left(z-x_{1}\right)^{-k_{1}}\right|\left|\left(z-x_{2}\right)^{-k_{2}}\right| \ldots \mid\left(z-x_{n-1}^{\prime}|(z)|\left(z-x_{1}\right)^{-k_{n}}\left(z-x_{2}\right)^{-k_{2}} \ldots\left(z-x_{n-1}\right)^{k_{n-1}} \mid\right. \\
& \quad=\left|\frac{A}{\left(z-x_{1}\right)^{k_{1}}}\right|\left|\frac{1}{\left(z-x_{2}\right)^{k_{2}}}\right| \ldots\left|\frac{1}{\left(z-x_{n-1}\right)^{k_{n-1}}}\right|,
\end{aligned}
$$

by using $\left(z-x_{j}\right)^{-k_{j}}=\left|z-x_{j}\right|^{-k_{j}} \exp \left(-i k_{j} \theta_{j}\right), \quad\left(-\frac{\pi}{2}<\theta_{j}<\frac{3 \pi}{2}\right)$ where $\theta_{j}=\arg \left(z-x_{j}\right)$ and $j=1,2, \ldots, n-$ 1 , then $f^{\prime}(z)$ is analytic everywhere in the half plane, so

$$
\left|f^{\prime}(z)\right|=\left|\frac{A e^{-i k_{1}} \theta_{1}}{\left(z-x_{1}\right)^{k_{1}}}\right|\left|\frac{e^{-i k_{2}} \theta_{2}}{\left(z-x_{2}\right)^{k_{2}}}\right| \ldots\left|\frac{e^{-i k_{n-1} \theta_{n-1}}}{\left(z-x_{n-1}\right)^{k_{n-1}}}\right|
$$

$=\frac{|A| \mid e^{-i k_{1}} \quad \theta_{1}}{\left\lvert\, \begin{array}{cc}z-x_{1} \mid \\ A\end{array} k_{1}\right.} \frac{\left|\begin{array}{ll}-i k_{2} & \theta_{2}\end{array}\right|}{\left|z-x_{2}\right|} k_{2} \quad \ldots \frac{\left|e^{-i k_{n-1}} \theta_{n-1}\right|}{\left|z-x_{n-1}\right| k_{n-1}}$
$<\frac{A}{\left|z-x_{1}\right| \quad k_{1}} \frac{1}{\left|z-x_{2}\right| \quad k_{2}} \cdots \frac{1}{\left|z-x_{n-1}\right| \quad k_{n-1}}$
By using $\left|e^{-i k{ }_{1 j} \theta_{j}}\right|=1 \quad$ and

$$
\begin{gathered}
\frac{2}{|Z|}<\left|z-x_{j}\right|<2|Z| \text { and } \\
\frac{1}{2|Z|}<\frac{1}{\left|Z-x_{j}\right|}<\frac{2}{|Z|}
\end{gathered}
$$

to equation (1.6) we have that
equation (1.6) $<\frac{2 A}{|z|^{k_{1}}}<\frac{1}{|z|^{k_{2}}} \cdots \frac{1}{|z| \quad k_{n-1}}$
$=\frac{2 A}{|z|^{k_{1} k_{2}+\cdots+k_{n-1}}}$. Since $k_{1}+k_{2}+\cdots+k_{n-1}+x_{n}=2,-1<k_{j}<1,(j=1.2, \ldots, n)$ then
$\frac{2 A}{|z|^{k_{1} k_{2}+\cdots+k_{n-1}}}=\frac{2 A}{|z|^{2-k_{n}}}$. It means, that there exist $M=2 A>0$ such that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq \frac{M}{|z|^{2-k_{n}}} \tag{1.7}
\end{equation*}
$$

Using equation (1.7) and

$$
\begin{align*}
\lim _{z \rightarrow \infty} F(z) & =\lim _{Z \rightarrow \infty} \int_{z_{0}}^{z} f^{\prime}(s) d s \tag{1.8}\\
& \leq \lim _{z \rightarrow \infty}\left|\int_{z_{0}}^{z} f^{\prime}(s) d s\right| \\
& \leq \lim _{z \rightarrow \infty} \int_{z_{0}}^{z}\left|f^{\prime}(s)\right| d s \\
\leq & \lim _{z \rightarrow \infty} \int_{z_{0}}^{z}\left|\frac{M}{|z|^{2-k_{n}}}\right| d s \\
& =M \lim _{z \rightarrow \infty} \int_{z_{0}}^{z} \frac{1}{|z|^{2-k_{n}}} d s
\end{align*}
$$

since $2-k_{n}>1$, then $\int_{z_{0}}^{z} \frac{1}{|z|^{2-k_{n}}} d s \rightarrow 0$, that means the limit of the integral (1.7) exists as z tend to infinity . So there exists a number w_{n} such that $f(\infty)=\lim _{z \rightarrow \infty} F(\infty)=w_{n}, \operatorname{Im} z \geq 0$. Next we will prove the equation (1.3). After taking the argument to the equation (1.5) we have
$\arg f^{\prime}(z)=\arg A-k_{1} \arg \left(z-x_{1}\right)-k_{2} \arg \left(z-x_{2}\right)-\ldots-k_{n-1} \arg \left(z-x_{n-1}\right)$
then by using identity (1.1),(1.2) yields

$$
\begin{gathered}
\arg f^{\prime}(z)=\arg A+\arg \left(z-x_{1}\right)^{-k_{1}} \quad\left(z-x_{2}\right)^{-k_{2}}-\cdots-\arg \left(z-x_{n-1}\right)^{-k_{n-1}} \\
\arg f^{\prime}(z)=\arg A\left(z-x_{1}\right)^{-k_{1}} \quad\left(z-x_{2}\right)^{-k_{2}} \ldots\left(z-x_{n-1}\right)^{-k_{n-1}}
\end{gathered}
$$

Let $-k_{1}=\frac{-\alpha_{1}}{x}$ then we have

$$
f^{\prime}(z)=A\left(z-x_{1}\right)^{-k_{1}}\left(z-x_{2}\right)^{-k_{2}} \ldots\left(z-x_{n-1}\right)^{-k_{n-1}}
$$

$$
\begin{gathered}
f^{\prime}(z)=A \quad\left(z-x_{1}\right)^{\frac{-\alpha_{1}}{x}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{x}} \ldots \quad\left(z-x_{n-1}\right)^{\frac{-\alpha_{n-1}}{x}}, \text { and } \\
\left.\int f^{\prime}(z)=\int A\left(z-x_{1}\right)^{\frac{-\alpha_{1}}{x}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{x}} \ldots\left(z-x_{n-1}\right)^{\frac{-\alpha_{n-1}}{x}} \ldots\right)^{\frac{-\alpha_{n-1}}{x}} \\
f(z)+c=\int A\left(z-x_{1}\right)^{\frac{-\alpha_{1}}{x}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{x}} \ldots\left(z-x_{n-1}\right)^{\frac{-\alpha_{1}}{x}} \ldots(z)^{\frac{-\alpha_{1}}{x}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{x}} \ldots\left(z-x_{n-1}\right)^{\frac{-\alpha_{n-1}}{x}}-c
\end{gathered}
$$

If $-c=B$ then

$$
f(z)=B+\int A\left(z-x_{1}\right)^{\frac{-\alpha_{1}}{x}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{x}} \ldots\left(z-x_{n-1}\right)^{\frac{-\alpha_{n-1}}{x}} d z
$$

$$
=B+\int A\left(z-x_{1}\right)^{\frac{-\alpha_{1}}{x}}\left(z-x_{2}\right)^{\frac{-\alpha_{2}}{x}} \ldots\left(z-x_{n-1}\right)^{\frac{-\alpha_{n-1}}{x}} d z .
$$

Next, since the argument of a product of the complex numbers are equal to the number of arguments of each factor, from equation (1.5) we have

$$
\begin{equation*}
\arg f^{\prime}(z)=\arg A-k_{1} \arg \left(z-x_{1}\right)-k_{2} \arg \left(z-x_{2}\right)-\cdots-k_{n-1} \arg \left(z-x_{n-1}\right) . \tag{1.9}
\end{equation*}
$$

The real numbers $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ take on the real axis z-plane. If z is a real number, then the number

$$
\begin{equation*}
N_{j}=z-x_{j}, \tag{1.10}
\end{equation*}
$$

is positive if z is greater than x_{j} and negative if z is less than x_{j} and

$$
\arg \left(z-x_{j}\right)=\left\{\begin{array}{l}
0, \quad \text { if } z>x_{j} \tag{1.11}\\
\pi, \\
\text { if } z<x_{j}
\end{array}\right.
$$

If $z=x$ and $x<x_{j}, j=1,2,3, \ldots, n-1$ then

$$
\begin{equation*}
\arg \left(z-x_{1}\right)=\arg \left(z-x_{2}\right)=\cdots=\arg \left(z-x_{n-1}\right)=\pi . \tag{1.12}
\end{equation*}
$$

If $z=x$ and $x_{r-1}<x<x_{r}, j=1,2, \ldots, r-1, r, r+1, \ldots, n-1$ and let

$$
\begin{equation*}
\phi_{r-1}=\arg f^{\prime}(z) \tag{1.13}
\end{equation*}
$$

then according to equation (1.9) and (1.11) and (1.13)

$$
\begin{gather*}
\arg f^{\prime}(z)=\arg A-k_{1} \arg \left(z-x_{1}\right)-k_{2} \arg \left(z-x_{2}\right)-\cdots-k_{n-1} \arg \left(z-x_{n-1}\right) \\
\phi \quad r-1=\arg A-k_{r} \arg \left(z-x_{r}\right)-k_{r+1} \arg \left(z-x_{r+1}\right)-\cdots-k_{n-1} \arg \left(z-x_{n-1}\right) \\
=\arg A-k_{r} \pi-k_{r+1} \pi-k_{r+2} \pi-\cdots-k_{n-1} \pi \\
=\arg A-\left(k_{r}-k_{r+1}-k_{r+2}-\cdots-k_{n-1}\right) \pi \tag{1.14}
\end{gather*}
$$

and

$$
\begin{gather*}
\phi \quad r=\arg A-k_{r+1} \arg \left(z-x_{r+1}\right)-k_{r+2} \arg \left(z-x_{r+2}\right)-\cdots-k_{n-1} \arg \left(z-x_{n-1}\right) \\
=\arg A-k_{r+1} \pi-k_{r+2} \pi-k_{r+3} \pi-\cdots-k_{n-1} \pi \\
=\arg A-\left(k_{r+1}-k_{r+2}-k_{r+3}-\cdots-k_{n-1}\right) \pi \tag{1.15}
\end{gather*}
$$

Then

$$
\begin{array}{ccc}
\phi_{r}-\phi & r-1 \tag{1.16}\\
& - & {\left[\arg A-\left(k_{r+1}-k_{r+2}-k_{r+3}-\cdots-k_{n-1}\right) \pi\right]} \\
{\left[\arg A-\left(k_{r}-k_{r+1}-k_{r+2}-\cdots-k_{n-1}\right) \pi\right]}
\end{array}
$$

$\phi \quad{ }_{r}-\phi \quad{ }_{r-1}=k_{r} \pi$, with $j=1,2,3, \cdots \quad, r-1, r, \cdots, n-1$.
Such that, if $z=x$ then $x_{j-1}<x<x_{j}, j=1,2, \ldots, n-1$ in the real axis z-plane from the left point x_{j} to his right, then the vector τ in w-plane change with angle $k_{j} \pi$, on the point of the image x_{j}, as shown in Figure 1.2. angle $k_{j} \pi$ is outside the terms of the z-plane at the point W_{j}.

Figure 1.2. Mapping $f(z)$ with $z=x$ and $x_{j-1}<x<x_{j}$ (see [3])
It is assumed that the sides of the z-plane do not intersect each other and take opposite corners clockwise. Outside corners can be approximated by the angle between π and $-\pi$, so that
$-1<k_{j}<1$, If the terms of n-closed, the number of outer corner is 2π.To prove it is seen to have sided closed $(n+1)$, see Figure 1.3

Figure 1.3. Closed n-image has $(n+1)$ plane (see [3]).
It has known that $k_{j} \pi$ is the magnitude of the outer corner at the point W_{j} which is the image of a point x_{j}. If many terms have side $n+1$, then

$$
\begin{gathered}
k_{2} \pi=\phi_{2}-\phi_{1} \\
k_{3} \pi=\phi_{3}-\phi_{2} \\
k_{4} \pi=\phi_{4}-\phi_{3} \\
\vdots \\
k_{n} \pi=\phi_{n}-\phi_{n-1}
\end{gathered}
$$

While the angle $k_{1} \pi=\phi_{1}-\phi_{n+1}$ and $k_{n+1} \pi=\phi_{n+1}+2 \pi-\phi_{n}$.
In terms of $-n . k_{n+1} \pi=0$ so that $\phi_{n}=\phi_{n+1}+2 \pi$. Thus, the $k_{1} \pi+k_{2} \pi+k_{3} \pi+\cdots+k_{n} \pi=\left(\phi_{1}-\phi_{n+1}\right)+\left(\phi_{2}-\phi_{1}\right)+\left(\phi_{3}-\phi_{2}\right)+\cdots+\left(\phi_{n}-\phi_{n+1}\right)$

$$
\begin{align*}
\left(k_{1}+k_{2}+k_{3}+\cdots+k_{n}\right) \pi & =\left(\phi_{n}-\phi_{n+1}\right) \\
& =2 \pi \\
k_{1}+k_{2}+k_{3}+\cdots+k_{n} & =2 \tag{1.17}
\end{align*}
$$

So it is clear that k_{j} with $j=1,2,3, \ldots, n$ satisfy the condition

$$
k_{1}+k_{2}+k_{3}+\cdots+k_{n}=2,-1<k_{j}<1 .
$$

End of proof.

V. ACKNOWLEDGEMENTS

I would like to thankProf.Dr.Marjono and Dr. Bagus, for theencouragements.

REFERENCES

[1]. Mark J. Ablowitz Athanassios S.fokas. Complex variables : Introduction andapplications, Second edition.Cambridge texts in applied mathematics,2003.
[2]. Howell, L.H. Computation of conformal maps by modified Schwarz-Christoffel transformations, 1990.
[3]. James Ward Brown and Ruel V.Churchil. Complex Variables and Applictions, Eighth Edition, McGraw-Hill, 2009.
[4]. Dennis G.Zill. Complex Analysis with Applications, Jones and Bartlett Publisher, 2003.
[5]. Jhon Mathews and Russell Howell. Complex analysis for mathmatics and engineering sixth edition,Jones and Bartlett Publisher, 2012.
[6]. Tobin A.Driscoll and Lloyd N. Thefethen. Schwarz-Christoffel Mapping, Cambridge Monographs on Applied and Computational Mathematics, 2002.
[7]. Gonzalo Riera, Hernán Carrasco, and Rube n Preiss .The Schwarz-Christoffel conformal mapping for "Polygons" with Infinitely Many Sides,InternationalJournal of Mathematics and Mathematical, Sciences Volume 2008, Hindawi Publishing Corporation, 2008.

