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Abstract 

This study investigates the convexity and concavity properties of higher-order Legendre polynomials through 

analytical and numerical approaches. Closed-form expressions of the second derivatives of the Legendre 

polynomials were utilized to determine the inflection points within the standard interval [−1,1]. Special 

emphasis is given to the seventh- and eighth-degree Legendre polynomials. Theoretical inflection points were 

obtained and verified numerically using finite-difference approximations in the R programming environment. 

Convex and concave regions were visually distinguished by color-coded plots. The results demonstrate that 

higher-degree Legendre polynomials exhibit increasingly complex oscillatory curvature structures characterized 

by alternating convex and concave intervals. These findings provide a detailed geometric interpretation of the 

curvature behavior of orthogonal polynomials and offer a useful framework for their application in 

approximation theory, spectral methods, and regression modeling. 
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I. Introduction 
Legendre polynomials constitute one of the most fundamental families of orthogonal polynomials in 

mathematical analysis and applied sciences. Defined on the interval [−1,1]and orthogonal with respect to the 

unit weight function, these polynomials form a natural basis for a wide range of theoretical and computational 

applications. They play a central role in approximation theory, spectral methods for differential equations, 

numerical integration, and statistical modeling, particularly in polynomial regression and orthogonal expansions 

(Burden and Faires, 2011). 

The geometric properties of basis functions, such as convexity and concavity, are of crucial importance 

in both theoretical investigations and practical applications. In regression analysis, for instance, the curvature 

structure of basis functions directly affects the flexibility, stability, and interpretability of fitted models. 

Similarly, in numerical analysis and spectral approximations, curvature behavior is closely related to oscillation 

patterns and error propagation. Despite the extensive literature on Legendre polynomials, most studies primarily 

focus on their orthogonality, recurrence relations, and approximation properties, while their detailed curvature 

structures have received comparatively less attention (Rockafellar, 1970). 

Convexity and concavity are classical concepts in mathematical analysis and are characterized by the 

sign of the second derivative. The points at which the second derivative vanishes define inflection points, 

separating convex and concave regions. For higher-degree polynomials, the number and distribution of such 

inflection points carry important geometric and numerical implications. In particular, the alternating convex–

concave structure of higher-order orthogonal polynomials reflects their oscillatory nature and directly influences 

their performance in approximation and regression-based modeling (Boyd, 2001; Mason &Handscomb, 2003). 

In recent years, the increasing use of orthogonal polynomial bases in data-driven and statistical learning 

frameworks has further highlighted the need for a precise understanding of their local curvature behavior. 

Multicollinearity reduction, numerical stability, and adaptive basis construction in regression and spectral 

modeling are all closely linked to the geometric characteristics of the chosen basis functions. However, 

systematic curvature-based analyses of higher-order Legendre polynomials supported by both analytical 

derivations and numerical verification remain relatively scarce in the literature(Szegö, 1939; Shen, Tang, & 

Wang, 2011). 

Motivated by this gap, the present study provides a comprehensive convexity–concavity analysis of 

Legendre polynomials based on second-derivative characterization and numerical validation. Special emphasis 

is placed on the seventh- and eighth-degree Legendre polynomials, which exhibit rich curvature structures 

representative of higher-order behavior. Analytical inflection points are derived from symbolic second 

derivatives and verified numerically using finite-difference approximations implemented in the R programming 
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environment. Convex and concave regions are illustrated through color-coded graphical representations (Tufte, 

2001). 

The main contributions of this study are threefold. First, it provides a systematic mathematical 

characterization of the inflection-point structure of higher-order Legendre polynomials. Second, it introduces a 

practical and reproducible numerical framework in R for curvature-based analysis and visualization. Third, it 

establishes a direct link between the geometric properties of Legendre polynomials and their role in statistical 

regression and spectral approximation methods. 

 

II. Materials And Methods 
Legendre polynomials 

The first kind of Legendre functions reduce to polynomials when n is zero or a positive even integer, 

whereas the second kind corresponds to positive odd integer values of n. The constants a₀ and a₁ are arbitrary 

and are chosen such that each polynomial satisfies the normalization condition Pₙ(1) = 1 (Altın, 2011). 

The first property of the Legendre polynomials is the Rodrigues formula (Lima, 2025).  

Pn x =
1

2nn!

dn

dxn
 x2 − 1 n ,   n ∈ N0 

The Rodrigues formula indicates that P(X) is an nth degree polynomial. Furthermore, for n odd, the polynomial 

is a n odd function, whereas for n even, it is an even function. 

 

Legendre’s Functions of First and Second Kinds 

 Pn x  represents Legendre's function of the first type, also known as Legendre's polynomial of degree n 

(Indian Institute of Technology Guwahati, n.d., 2025). 

  

Pn x =
1.3.5 … . (2n − 1)

n!
 xn −

n n − 1 

2 2n − 1 
xn−2 +

n n − 1  n − 2  n − 3 

2.4 2n − 1  2n − 3 
xn−4 − ⋯  

It can be also written Pn x  in a compact from as: 

Pn x =  (−1)r
 2n − 2r !

2nr!  n − 2r ! (n − r)
xn−2r

 n/2 

r=0

 

where     n/2 =  

n

2
, if n is even 

 n − 1 /2, if n is odd

  

Legendre’s function of the second kind is denoted by Qn(x) and is defined by  

Qn x =
n!

1.3.5 … . (2n + 1)
 x−n−1 +

 n + 1 (n + 2)

2 2n + 3 
x−n−3 +

 n + 1  n + 2  n + 3 (n + 4)

2.4 2n + 3  2n + 5 
x−n−5 − ⋯   

 

Some Legendre polynomials are given below (Altın, 2011). 

P0 x = 1 

P1 x = x 

P2 x =
1

2
 3x2 − 1  

P3 x =
1

2
 5x3 − 3x  

P4 x =
1

8
 35x4 − 30x2 + 3  

P5 x =
1

8
 63x5 − 70x3 + 15x  

The sixth and seventh Legendre polynomials are as follows (Badmus and Subair, 2024). 

P6 x =
1

16
 231x6 − 315x4 + 105x2 − 5  

P7 x =
1

16
 429x7 − 693x5 + 315x3 − 35x  

Convex Function 

A convex function is defined as follows. 

Let S be a non-empty set defined in En. If f(x) is a convex function on S, then 

f λx2 +  1 − λ x1 ≤ λf x2 +  1 − λ f(x1) 

Here, x1 , x2  ϵS and  λϵ 0,1 .  
If f(x) is a strictly convex function, then 

f λx2 +  1 − λ x1 < λf x2 +  1 − λ f(x1) 
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(Apaydın, 1996). In this case, the function−f x  will be concave. For example, the convexity of the 

functionf x = x2 , x ∈ ℝis shown below. The function f(x) is denoted as 

f 𝜆𝑥2 +  1 − 𝜆 𝑥1 ≤ 𝜆𝑓 𝑥2 +  1 − 𝜆 𝑓 𝑥1 ,     0 ≤ 𝜆 ≤ 1. 
 

 𝜆𝑥2 +  1 − 𝜆 𝑥1 
2 ≤ 𝜆 𝑥2 

2 + (1 − 𝜆) 𝑥1 
2 

𝜆2𝑥2
2 + 2𝜆 1 − 𝜆 𝑥1𝑥2 + (1 − 𝜆)2𝑥1

2 ≤ 𝜆𝑥2
2 +  1 − 𝜆 𝑥1

2 

𝜆2𝑥2
2 + 2𝜆 1 − 𝜆 𝑥1𝑥2 + (1 − 𝜆)2𝑥1

2 − 𝜆𝑥2
2 −  1 − 𝜆 𝑥1

2 ≤ 0 

−𝜆 1 − 𝜆 𝑥2
2 + 2𝜆 1 − 𝜆 𝑥1𝑥2 − 𝜆 1 − 𝜆 𝑥1

2 ≤ 0 

−𝜆 1 − 𝜆 (𝑥2
2 − 2𝑥1𝑥2 + 𝑥1

2) ≤ 0 

−𝜆 1 − 𝜆  𝑥1 − 𝑥2 
2 ≤ 0 

Since the function𝑓 𝑥 = 𝑥2 is convex.A similar example of a concave function can be given. The concave 

nature of the function𝑓 𝑥 =  𝑥, 𝑥 ∈ ℝis shownbelow. 

𝑓 𝜆𝑥1 +  1 − 𝜆 𝑥2 ≤ 𝜆𝑓 𝑥1 +  1 − 𝜆 𝑓 𝑥2 , 0 ≤ 𝜆 ≤ 1 

 𝜆𝑥1 +  1 − 𝜆 𝑥2 ≤ 𝜆 𝑥1 +  1 − 𝜆  𝑥2 

𝜆𝑥1 +  1 − 𝜆 𝑥2 ≤ 𝜆2𝑥1 +  1 − 𝜆 2𝑥2 + 2𝜆 1 − 𝜆  𝑥1𝑥2 

𝜆𝑥1 + 𝑥2 − 𝜆𝑥2 ≤ 𝜆2𝑥1 +  1 − 2𝜆 + 𝜆2 𝑥2 + 2𝜆 1 − 𝜆  𝑥1𝑥2 

𝜆𝑥1 + 𝑥2 − 𝜆𝑥2 ≤ 𝜆2𝑥1 + 𝑥2 + 𝜆2𝑥2 − 2𝜆𝑥2 + (2𝜆 − 2𝜆2) 𝑥1𝑥2 

𝜆𝑥1 ≤ 𝜆2𝑥1 + 𝜆2𝑥2 − 𝜆𝑥2 + 2𝜆 𝑥1𝑥2 − 2𝜆2 𝑥1𝑥2 

For example, let 𝜆 = 0.6. 

0.6𝑥1 ≤ 0.36𝑥1 + 0.36𝑥2 − 0.6𝑥2 + 1.2 𝑥1𝑥2 − 0.72 𝑥1𝑥2 

0.6𝑥1 ≤ 0.36𝑥1 − 0.24𝑥2 + 0.48 𝑥1𝑥2 

0 ≤ −0.24𝑥1 − 0.24𝑥2 + 0.48 𝑥1𝑥2 

0 ≰ −0.24(𝑥1 − 𝑥2 + 2 𝑥1𝑥2) 

Therefore, this inequality is not satisfied and the function 𝑓 𝑥 =  𝑥 is concave.  

The second derivative test is a powerful tool for identifying convexity (Niculescu and Persson, 2006). 

Given a function 𝑦 = 𝑓 𝑥 , if 𝑓′′(𝑥) ≥ 0 on an interval (𝑎, 𝑏), then f(x) is convex on that interval. If 𝑓 ′′ 𝑥 < 0 

on an interval (𝑎, 𝑏), then f is concave on that interval. 

Given a function 𝑦 = 𝑓(𝑥), the sign of its second derivative determines its curvature. If on an interval (𝑎, 𝑏), 

𝑓 ′′(𝑥) ≥ 0, 
then the function 𝑓is convex on this interval. Conversely, if on the same interval 

𝑓 ′′(𝑥) < 0, 
then the function 𝑓is concave on this interval (Stewart, 2016). 

 

III. Results 
The convexity condition of the first Legendre polynomials is summarized below. 

𝑃0(𝑥) = 1 

𝑃0
′′(𝑥) = 0 

It is neither convex nor concave. It is a smooth function. 

𝑃1(𝑥) = 𝑥 

𝑃1
′′(𝑥) = 0 

Straight line again. 

𝑃2(𝑥) =
1

2
(3𝑥2 − 1) 

𝑃2
′ (𝑥) = 3𝑥 

𝑃2
′′(𝑥) = 3 > 0 

It is convex in all ℝ. 

𝑃3(𝑥) =
1

2
(5𝑥3 − 3𝑥) 

𝑃3
′ (𝑥) =

1

2
(15𝑥2 − 3) 

𝑃3
′′(𝑥) = 15𝑥 

 

Convex intervals are as follows: If 𝑥 > 0, it is convex, if 𝑥 < 0, it is concave, and if 𝑥 = 0, it is a curvature 

change point. 

𝑃4(𝑥) =
1

8
(35𝑥4 − 30𝑥2 + 3) 
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𝑃4
′ (𝑥) =

1

8
(140𝑥3 − 60𝑥) 

𝑃4
′′(𝑥) =

1

8
(420𝑥2 − 60) 

Zero points: 

420𝑥2 − 60 = 0 ⇒ 𝑥2 =
1

7
⇒ 𝑥 = ±

1

 7
≈ ±0.378 

According to the results obtained using the numerical second derivative, the Legendre polynomial 𝑃4(𝑥) 

exhibits a convex structure in the range ∣ 𝑥 ∣> 1/ 7 and a concave structure in the range ∣ 𝑥 ∣< 1/ 7. The 

curvature change points are also verified numerically. 

𝑃5(𝑥) =
𝑥(63𝑥4 − 70𝑥2 + 15)

8
 

The second derivative of 𝑃5(𝑥)is 

𝑃5
′′ 𝑥 =

105

2
 𝑥 3𝑥2 − 1 . 

Inflection points of 𝑃5(𝑥) 

(𝑃5
′′(𝑥) = 0, [−1,1]): 

𝑥 = −0.577350,  0.0,  0.577350(±1/ 3, 0) 
 

Convex/Concave intervals (as open intervals): 

 (-1,-0.577350): concave  

 (-0.577350,0): convex  

 (0,0.577350): concave  

 (0.577350,1): convex 

𝑃5(𝑥) shows a symmetric structure; since its second derivative has a factor of 𝑥 and 3𝑥2 − 1 , there are three 

inflection points and the convex/concave regions change regularly according to the range. 

𝑃6(𝑥) =
231𝑥6 − 315𝑥4 + 105𝑥2 − 5

16
 

Second derivative of 𝑃6(𝑥) 

𝑃6
′′(𝑥) =

105

8
 (33𝑥4 − 18𝑥2 + 1) 

Skew change (real roots, [-1,1]): 

𝑥 ≈ −0.694747,   − 0.250563,  0.250563,  0.694747 

Convex/Concave ranges: 

 (−1,−0.694747): Convex 

 (−0.694747,−0.250563): Concave 

 (−0.250563,0.250563): Convex 

 (0.250563,0.694747): Concave 

 (0.694747,1): Convex 

 

For 𝑃6, 𝑃6
′′contains four real roots, which shows that the polynomial has successive convex/concave transitions 

in [-1,1]. 

𝑃7(𝑥) =
𝑥(429𝑥6 − 693𝑥4 + 315𝑥2 − 35)

16
 

 

Second derivative of 𝑃7(𝑥) 

𝑃7
′′(𝑥) =

63

8
 𝑥(143𝑥4 − 110𝑥2 + 15) 

Skew change (roots, [-1,1]): 

𝑥 ≈ −0.769455,   − 0.420915,  0.0,  0.420915,  0.769455 

Convex/Concave ranges: 

 (−1,−0.769455): Concave 

 (−0.769455,−0.420915): Convex 

 (−0.420915, 0): Concave 

 (0,0.420915): Convex 

 (0.420915,0.769455): Concave 

 (0.769455,1): Convex 
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In odd polynomials, 𝑥 = 0is necessarily an inflection point due to the x factor; 𝑃7 shows this and ±two 

symmetric inflections. 

The graph showing the intervals in which 𝑃7(𝑥)is convex and concave is presented in Figure 1. 

 

 
Figure 1. Convex and Concave ranges in 𝑃7(𝑥) 

 

𝑃8(𝑥) =
6435𝑥8 − 12012𝑥6 + 6930𝑥4 − 1260𝑥2 + 35

128
 

Second derivative of 𝑃8(𝑥) 

𝑃8
′′(𝑥) =

315

16
 (143𝑥6 − 143𝑥4 + 33𝑥2 − 1) 

Skew change (roots, [-1,1]): 

𝑥 ≈ −0.855402,   − 0.627378,   − 0.331630,  0.0,  0.331630,  0.627378,  0.855402 

Convex/Concave ranges: 

Intervals alternate between roots; in example order (left to right): 

 (−1,−0.855402): Convex 

 (−0.855402,−0.627378): Concave 

 (−0.627378,−0.331630): Convex 

 (−0.331630,0): Concave 

 (0,0.331630): Convex 

 (0.331630,0.627378): Concave 

 (0.627378,0.855402): Convex 

 (0.855402,1): Concave 

 

For 𝑃8, 𝑃8
′′contains a low degree polynomial and there are 7 inflection points in [-1,1]; due to symmetry the 

points are ± conjugate and 𝑥 = 0is again an inflection point. 

The graph showing the intervals in which 𝑃8(𝑥)is convex and concave is presented in Figure 2. 
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Figure 2. Convex and Concave ranges in 𝑃8(𝑥) 

 

𝑃9(𝑥) =
𝑥(12155𝑥8 − 25740𝑥6 + 18018𝑥4 − 4620𝑥2 + 315)

128
 

Second derivative of 𝑃9(𝑥) 

𝑃9
′′(𝑥) =

495

16
 𝑥 (221𝑥6 − 273𝑥4 + 91𝑥2 − 7) 

Skew change (roots, [-1,1]): 

𝑥 ≈ −0.881409,   − 0.692061,   − 0.441433,   − 0.151632,  0.151632,  0.441433,  0.692061,  0.881409 
 

Since 𝑃9is odd-degree, its second derivative contains a factor of x; this polynomial exhibits high-degree varying 

curvature behavior and has 8 inflection points in [-1,1]. 

P10 (x) =
46189x10 − 109395x8 + 45045x6 − 15015x4 + 3465x2 − 63

256
 

Second derivative of P10(x) 

P10
′′ (x) =

495

128
 (4199x8 − 6188x6 + 2730x4 − 364x2 + 7) 

Skew change (roots, [-1,1]): 

x ≈ −0.881409,   − 0.692061,   − 0.441433,   − 0.151632,  0.151632,  0.441433,  0.692061,  0.881409 

 

Convex/Concave ranges: 

 (−1,−0.881409): Convex 

 (−0.881409,−0.692061): Concave 

 (−0.692061,−0.441433): Convex 

 (−0.441433,−0.151632): Concave 

 (−0.151632,0.151632): Convex 

 (0.151632,0.441433): Concave 

 (0.441433,0.692061): Convex 

 (0.692061,0.881409): Concave 

 (0.881409,1): Convex 

P10 is a higher order polynomial of even degree; due to the polynomial nature of the second derivative, multiple 

(8) inflection points occur in [-1,1] and convex/concave regions alternate. 
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IV. Conclusion 
This study has systematically examined the convexity and concavity behavior of Legendre polynomials 

through second-derivative analysis and numerical verification. The findings demonstrate that, except for low-

degree cases, Legendre polynomials exhibit multiple alternating convex and concave regions within the interval 

[−1,1]. The number of inflection points increases with the polynomial degree, leading to progressively more 

complex curvature structures. 

The detailed numerical analysis of P7(x)and P8(x)confirmed the existence of multiple symmetric 

inflection points and provided a clear visualization of curvature transitions. The computational framework 

implemented in the R environment successfully validated the analytical results and offered an efficient tool for 

curvature-based analysis of orthogonal polynomials. 

These results underline the importance of curvature structure when Legendre polynomials are 

employed in practical applications such as spectral approximation, regression modeling, and numerical solution 

of differential equations. The pronounced convex–concave alternations observed in higher-order polynomials 

highlight their strong flexibility in modeling nonlinear phenomena. Future research may extend this approach to 

multivariate Legendre expansions and curvature analysis in high-dimensional approximation and machine 

learning models. 
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